Concise Communication

Abstract

Nearly 50% of prostate cancers harbor gene fusions that lead to overexpression of the transcription factor ERG, while a mutually exclusive 10% of prostate cancers harbor recurrent mutations in the gene encoding the E3 ubiquitin ligase SPOP. Recent reports suggest that SPOP acts as a ubiquitin ligase for ERG and propose that ERG stabilization is the oncogenic effector of SPOP mutation. Here, we used human prostate cancer samples and showed that the vast majority of human SPOP-mutant cancers do not express ERG. Comparison of SPOP-mutant and ERG-fusion organoid models showed evidence of divergent, rather than common, transcriptional programs. Furthermore, expression of prostate cancer–associated SPOP mutations in genetically engineered mouse models of SPOP-mutant prostate cancer did not result in the expression of ERG protein in histologically normal prostate glands, high-grade prostatic intraepithelial neoplasia, invasive adenocarcinoma, or prostate organoids. In summary, we found no evidence that ERG is an effector of SPOP mutation in human prostate cancer or mouse models.

Authors

Jonathan Shoag, Deli Liu, Mirjam Blattner, Andrea Sboner, Kyung Park, Lesa Deonarine, Brian D. Robinson, Juan Miguel Mosquera, Yu Chen, Mark A. Rubin, Christopher E. Barbieri

×

Abstract

Medulloblastoma, an aggressive cancer of the cerebellum, is among the most common pediatric brain tumors. Approximately one-third of medulloblastomas are associated with misactivation of the Hedgehog (Hh) pathway. GLI family zinc finger 2 (GLI2) coordinates the Hh transcriptional program; however, the GLI2 targets that promote cancer cell proliferation are unknown. Here, we incorporated a Gli2-EGFP allele into 2 different genetic mouse models of Hh-associated medulloblastoma. Hh signaling induced GLI2 binding to the Cdk6 promoter and activated Cdk6 expression, thereby promoting uncontrolled cell proliferation. Genetic or pharmacological inhibition of CDK6 in mice repressed the growth of Hh-associated medulloblastoma and prolonged survival through inhibition of cell proliferation. In human medulloblastoma, misactivation of Hh signaling was associated with high levels of CDK6, pointing to CDK6 as a direct transcriptional target of the Hh pathway. These results suggest that CDK6 antagonists may be a promising therapeutic approach for Hh-associated medulloblastoma in humans.

Authors

David R. Raleigh, Pervinder K. Choksi, Alexis Leigh Krup, Wasima Mayer, Nicole Santos, Jeremy F. Reiter

×

Abstract

Primary immunodeficiencies are often monogenic disorders characterized by vulnerability to specific infectious pathogens. Here, we performed whole-exome sequencing of a patient with disseminated Mycobacterium tuberculosis, Streptococcus viridians bacteremia, and cytomegalovirus (CMV) viremia and identified mutations in 2 genes that regulate distinct IFN pathways. The patient had a homozygous frameshift deletion in IFNGR2, which encodes the signal transducing chain of the IFN-γ receptor, that resulted in minimal protein expression and abolished downstream signaling. The patient also harbored a homozygous deletion in IFNAR1 (IFNAR1*557Gluext*46), which encodes the IFN-α receptor signaling subunit. The IFNAR1*557Gluext*46 resulted in replacement of the stop codon with 46 additional codons at the C-terminus. The level of IFNAR1*557Gluext*46 mutant protein expressed in patient fibroblasts was comparable to levels of WT IFNAR1 in control fibroblasts. IFN-α–induced signaling was impaired in the patient fibroblasts, as evidenced by decreased STAT1/STAT2 phosphorylation, nuclear translocation of STAT1, and expression of IFN-α–stimulated genes critical for CMV immunity. Pretreatment with IFN-α failed to suppress CMV protein expression in patient fibroblasts, whereas expression of WT IFNAR1 restored IFN-α–mediated suppression of CMV. This study identifies a human IFNAR1 mutation and describes a digenic immunodeficiency specific to type I and type II IFNs.

Authors

Rodrigo Hoyos-Bachiloglu, Janet Chou, Catherine N. Sodroski, Abdallah Beano, Wayne Bainter, Magdalena Angelova, Eman Al Idrissi, Murad K. Habazi, Hamza Ali Alghamdi, Fahd Almanjomi, Mohamed Al Shehri, Nagi Elsidig, Morsi Alaa Eldin, David M. Knipe, Mofareh AlZahrani, Raif S. Geha

×

Abstract

Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544–/– mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT.

Authors

Chunyan Wu, Su Hyeon Hwang, Yaoyao Jia, Joobong Choi, Yeon-Ji Kim, Dahee Choi, Duleepa Pathiraja, In-Geol Choi, Seung-Hoi Koo, Sung-Joon Lee

×

Abstract

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress–associated dwarfism MCDS.

Authors

Lorna A. Mullan, Ewa J. Mularczyk, Louise H. Kung, Mitra Forouhan, Jordan M.A. Wragg, Royston Goodacre, John F. Bateman, Eileithyia Swanton, Michael D. Briggs, Raymond P. Boot-Handford

×

Abstract

Juvenile myelomonocytic leukemia (JMML) is a pediatric myeloproliferative neoplasm that bears distinct characteristics associated with abnormal fetal development. JMML has been extensively modeled in mice expressing the oncogenic KrasG12D mutation. However, these models have struggled to recapitulate the defining features of JMML due to in utero lethality, nonhematopoietic expression, and the pervasive emergence of T cell acute lymphoblastic leukemia. Here, we have developed a model of JMML using mice that express KrasG12D in multipotent progenitor cells (Flt3Cre+ KrasG12D mice). These mice express KrasG12D in utero, are born at normal Mendelian ratios, develop hepatosplenomegaly, anemia, and thrombocytopenia, and succumb to a rapidly progressing and fully penetrant neonatal myeloid disease. Mutant mice have altered hematopoietic stem and progenitor cell populations in the BM and spleen that are hypersensitive to granulocyte macrophage–CSF due to hyperactive RAS/ERK signaling. Biased differentiation in these progenitors results in an expansion of neutrophils and DCs and a concomitant decrease in T lymphocytes. Flt3Cre+ KrasG12D fetal liver hematopoietic progenitors give rise to a myeloid disease upon transplantation. In summary, we describe a KrasG12D mouse model that reproducibly develops JMML-like disease. This model will prove useful for preclinical drug studies and for elucidating the developmental origins of pediatric neoplasms.

Authors

Stefan P. Tarnawsky, Rebecca J. Chan, Mervin C. Yoder

×

Abstract

Atypical antipsychotics such as olanzapine often induce excessive weight gain and type 2 diabetes. However, the mechanisms underlying these drug-induced metabolic perturbations remain poorly understood. Here, we used an experimental model that reproduces olanzapine-induced hyperphagia and obesity in female C57BL/6 mice. We found that olanzapine treatment acutely increased food intake, impaired glucose tolerance, and altered physical activity and energy expenditure in mice. Furthermore, olanzapine-induced hyperphagia and weight gain were blunted in mice lacking the serotonin 2C receptor (HTR2C). Finally, we showed that treatment with the HTR2C-specific agonist lorcaserin suppressed olanzapine-induced hyperphagia and weight gain. Lorcaserin treatment also improved glucose tolerance in olanzapine-fed mice. Collectively, our studies suggest that olanzapine exerts some of its untoward metabolic effects via antagonism of HTR2C.

Authors

Caleb C. Lord, Steven C. Wyler, Rong Wan, Carlos M. Castorena, Newaz Ahmed, Dias Mathew, Syann Lee, Chen Liu, Joel K. Elmquist

×

Abstract

Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immunity by analyzing the phenotype of Nbeal2-deficient mice. We found profound abnormalities in the Nbeal2-deficient immune system, particularly in the function of neutrophils and NK cells. Phenotyping of Nbeal2-deficient neutrophils showed a severe reduction in granule contents across all granule subsets. Despite this, Nbeal2-deficient neutrophils had an enhanced phagocyte respiratory burst relative to Nbeal2-expressing neutrophils. This respiratory burst was associated with increased expression of cytosolic components of the NADPH oxidase complex. Nbeal2-deficient NK cells were also dysfunctional and showed reduced degranulation. These abnormalities were associated with increased susceptibility to both bacterial (Staphylococcus aureus) and viral (murine CMV) infection in vivo. These results define an essential role for NBEAL2 in mammalian immunity.

Authors

John M. Sowerby, David C. Thomas, Simon Clare, Marion Espéli, Jose A. Guerrero, Kim Hoenderdos, Katherine Harcourt, Morgan Marsden, Juneid Abdul-Karim, Mathew Clement, Robin Antrobus, Yagnesh Umrania, Philippa R. Barton, Shaun M. Flint, Jatinder K. Juss, Alison M. Condliffe, Paul A. Lyons, Ian R. Humphreys, Edwin R. Chilvers, Willem H. Ouwehand, Gordon Dougan, Kenneth G.C. Smith

×

Abstract

An increase in hepatic glucose production (HGP) represents a key feature of type 2 diabetes. This deficiency in metabolic control of glucose production critically depends on enhanced signaling through hepatic glucagon receptors (GCGRs). Here, we have demonstrated that selective inactivation of the GPCR-associated protein β-arrestin 2 in hepatocytes of adult mice results in greatly increased hepatic GCGR signaling, leading to striking deficits in glucose homeostasis. However, hepatocyte-specific β-arrestin 2 deficiency did not affect hepatic insulin sensitivity or β-adrenergic signaling. Adult mice lacking β-arrestin 1 selectively in hepatocytes did not show any changes in glucose homeostasis. Importantly, hepatocyte-specific overexpression of β-arrestin 2 greatly reduced hepatic GCGR signaling and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Our data support the concept that strategies aimed at enhancing hepatic β-arrestin 2 activity could prove useful for suppressing HGP for therapeutic purposes.

Authors

Lu Zhu, Mario Rossi, Yinghong Cui, Regina J. Lee, Wataru Sakamoto, Nicole A. Perry, Nikhil M. Urs, Marc G. Caron, Vsevolod V. Gurevich, Grzegorz Godlewski, George Kunos, Minyong Chen, Wei Chen, Jürgen Wess

×

Abstract

Huntington’s disease is a neurodegenerative disorder caused by a polyglutamine repeat in the Huntingtin gene (HTT). Although suppressing the expression of mutant HTT (mHTT) has been explored as a therapeutic strategy to treat Huntington’s disease, considerable efforts have gone into developing allele-specific suppression of mHTT expression, given that loss of Htt in mice can lead to embryonic lethality. It remains unknown whether depletion of HTT in the adult brain, regardless of its allele, could be a safe therapy. Here, we report that permanent suppression of endogenous mHTT expression in the striatum of mHTT-expressing mice (HD140Q-knockin mice) using CRISPR/Cas9-mediated inactivation effectively depleted HTT aggregates and attenuated early neuropathology. The reduction of mHTT expression in striatal neuronal cells in adult HD140Q-knockin mice did not affect viability, but alleviated motor deficits. Our studies suggest that non–allele-specific CRISPR/Cas9-mediated gene editing could be used to efficiently and permanently eliminate polyglutamine expansion–mediated neuronal toxicity in the adult brain.

Authors

Su Yang, Renbao Chang, Huiming Yang, Ting Zhao, Yan Hong, Ha Eun Kong, Xiaobo Sun, Zhaohui Qin, Peng Jin, Shihua Li, Xiao-Jiang Li

×

No posts were found with this tag.