In situ cancer vaccines are under active clinical investigation due to their reported ability to eradicate both local and disseminated malignancies. Intratumoral vaccine administration is thought to activate a T cell mediated immune response, which begins in the treated tumor and cascades systemically. We describe a positron emission tomography tracer (64Cu-DOTA-AbOX40) that enabled non-invasive and longitudinal imaging of OX40, a cell surface marker of T cell activation. We report the spatiotemporal dynamics of T cell activation following in situ vaccination with CpG oligodeoxynucleotide, in a dual tumor bearing mouse model. We demonstrate that OX40 imaging could predict tumor responses at day 9 post treatment based on tumor tracer uptake at day 2, with higher accuracy than both anatomical and blood-based measurements. These studies provide key insights into global T cell activation following local CpG treatment and indicate that 64Cu-DOTA-AbOX40 is a promising candidate for monitoring clinical cancer immunotherapy strategies.
Israt S. Alam, Aaron T. Mayer, Idit Sagiv-Barfi, Kezheng Wang, Ophir Vermesh, Debra K. Czerwinski, Emily M. Johnson, Michelle L. James, Ronald Levy, Sanjiv S. Gambhir