Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1

ME Patti, AJ Butte, S Crunkhorn… - Proceedings of the …, 2003 - National Acad Sciences
ME Patti, AJ Butte, S Crunkhorn, K Cusi, R Berria, S Kashyap, Y Miyazaki, I Kohane
Proceedings of the National Academy of Sciences, 2003National Acad Sciences
Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic β cell
dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in
skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis,
and accumulation of intramyocellular triglycerides have all been linked with insulin
resistance, but no specific defect responsible for insulin resistance and DM has been
identified in humans. To identify genes potentially important in the pathogenesis of DM, we …
Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic β cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. To identify genes potentially important in the pathogenesis of DM, we analyzed gene expression in skeletal muscle from healthy metabolically characterized nondiabetic (family history negative and positive for DM) and diabetic Mexican–American subjects. We demonstrate that insulin resistance and DM associate with reduced expression of multiple nuclear respiratory factor-1 (NRF-1)-dependent genes encoding key enzymes in oxidative metabolism and mitochondrial function. Although NRF-1 expression is decreased only in diabetic subjects, expression of both PPARγ coactivator 1-α and-β (PGC1-α/PPARGC1 and PGC1-β/PERC), coactivators of NRF-1 and PPARγ-dependent transcription, is decreased in both diabetic subjects and family history-positive nondiabetic subjects. Decreased PGC1 expression may be responsible for decreased expression of NRF-dependent genes, leading to the metabolic disturbances characteristic of insulin resistance and DM.
National Acad Sciences