[HTML][HTML] Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4

S Hatse, K Princen, G Bridger, E De Clercq, D Schols - FEBS letters, 2002 - Elsevier
S Hatse, K Princen, G Bridger, E De Clercq, D Schols
FEBS letters, 2002Elsevier
This study was undertaken to demonstrate the unique specificity of the chemokine receptor
CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell
combinations, affording distinct chemokine receptor specificities, revealed no interaction of
AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through
CCR9. In contrast, AMD3100 potently inhibited CXCR4-mediated calcium signaling and
chemotaxis in a concentration-dependent manner in different cell types. Also, AMD3100 …
This study was undertaken to demonstrate the unique specificity of the chemokine receptor CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell combinations, affording distinct chemokine receptor specificities, revealed no interaction of AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through CCR9. In contrast, AMD3100 potently inhibited CXCR4-mediated calcium signaling and chemotaxis in a concentration-dependent manner in different cell types. Also, AMD3100 inhibited stromal cell-derived factor (SDF)-1-induced endocytosis of CXCR4, but did not affect phorbol ester-induced receptor internalization. Importantly, AMD3100 by itself was unable to elicit intracellular calcium fluxes, to induce chemotaxis, or to trigger CXCR4 internalization, indicating that the compound does not act as a CXCR4 agonist. Specific small-molecule CXCR4 antagonists such as AMD3100 may play an important role in the treatment of human immunodeficiency virus infections and many other pathological processes that are dependent on SDF-1/CXCR4 interactions (e.g. rheumatoid arthritis, atherosclerosis, asthma and breast cancer metastasis).
Elsevier