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Insulin resistance and atherosclerosis

Clay F. Semenkovich

Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.

Considerable evidence supports the association between insulin resistance and vascular disease, and this has
led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a
clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other meta-
bolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vas-
cular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis
could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis

caused by the excess delivery of fuel.

Insulin resistance is strongly associated with atherosclerosis and
frequently coexists with common proatherogenic disorders; this
relationship is not new. Until the 1700s, disease was thought to
be caused by “humors,” a concept dating from the time of Hip-
pocrates. The year 1761 was notable for the publication of De
Sedibus et Causis Morborum per Anatomen Indagatis, a landmark work
establishing the anatomic basis of multiple diseases. Using a com-
bination of clinical histories and autopsies, Morgagni identified
the association between intraabdominal obesity, hypertension,
abnormal metabolism, and extensive atherosclerosis (1). The
notion of a syndrome linking metabolic derangements, obesity,
and vascular disease went unnoticed until the early 20th century,
when Himsworth raised the possibility that insulin insensitivity
could have metabolic consequences (2). This was followed by the
observation made in the 1950s that hypertriglyceridemia is as
common as hypercholesterolemia in individuals with coronary
heart disease (3), the discovery by Yalow and Berson in the 1960s
that diabetes can occur in the setting of hyperinsulinemia (4), and
data from Reaven and colleagues showing that myocardial infarc-
tion survivors tend to be insulin resistant and hypertriglyceride-
mic (5). Associations with low HDL cholesterol and hypertension
followed, and Reaven integrated this information in his 1988 Ban-
ting Lecture (6) when he coined the term “syndrome X” for the
insulin resistance syndrome. This rubric evolved to be known as
the metabolic syndrome.

The general thesis received the imprimatur of the National Cho-
lesterol Education Program’s Adult Treatment Panel III in 2001
with the establishment of discrete criteria for the metabolic syn-
drome. Currently, the syndrome is defined by the presence of 3
or more of the following: hypertriglyceridemia (2150 mg/dl), low
HDL cholesterol (<50 mg/dl in women, <40 mg/dl in men), hyper-
tension (2130/85 mmHg), increased waist circumference (>35
inches in women, >40 inches in men), and elevated fasting glucose
(2100 mg/dl). The WHO has similar criteria that include a prereq-
uisite of diabetes, impaired glucose metabolism, or documented
(by hyperinsulinemic-euglycemic clamp) insulin resistance. The
syndrome has its own ICD-9 code (277.7), afflicts between 20%
and 25% of adults in the US alone, and is associated with coronary
heart disease (7) as well as increased mortality (8).

Nonstandard abbreviations used: ACE, angiotensin-converting enzyme;
CB, cannabinoid; PTP1B, protein tyrosine phosphatase 1B.
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Dyslipidemia in insulin resistance

The lack of appropriate insulin signaling, especially in peripheral
tissues such as adipose cells, results in abnormal lipid metabolism
that consistently produces a proatherogenic phenotype (Figure 1).
Long before people with insulin resistance develop abnormalities of
glucose metabolism, circulating FFA levels increase. Impaired insu-
lin signaling leads to loss of suppression of lipolysis (a G protein-
coupled process likely mediated by a recently discovered enzyme
distinct from hormone-sensitive lipase; ref. 9) and perhaps defec-
tive storage of fatty acids in adipocytes (10). The excess provision
of lipids from a variety of sources (circulating FFAs originating in
fat, endocytosis of triglyceride-rich lipoproteins, and de novo lipo-
genesis) leads to the posttranslational stabilization of apoB, the
major apolipoprotein of VLDL, which enhances the assembly and
secretion of VLDL particles (reviewed in ref. 11). Insulin signaling,
through PI3K-dependent pathways, also promotes the degrada-
tion of apoB. Thus, a combination of excess delivery of fatty acids
and limited degradation of apoB explains the hypertriglyceridemia
characteristic of insulin resistance. Insulin resistance also decreases
lipoprotein lipase activity, the major mediator of VLDL clearance,
which may make a smaller contribution to elevated triglycerides
in this setting. VLDL is metabolized to remnant lipoproteins and
LDL, both strongly associated with atherosclerotic risk. LDL cho-
lesterol levels are usually not elevated in insulin resistance, but rem-
nants are increased and LDL composition is altered. The role of
small dense LDL in mediating vascular disease is unresolved.

Increased concentrations of triglyceride-rich VLDL particles con-
tribute to abnormal HDL metabolism in insulin resistance (11).
Cholesteryl ester transfer protein mediates the exchange of choles-
teryl esters in HDL for triglycerides in VLDL, resulting in cholesteryl
ester—enriched VLDL and triglyceride-enriched HDL. The presence
of increased triglyceride makes the latter particle a better substrate
for hepatic lipase, which may be increased in insulin resistance, and
HDL particles decrease because of enhanced metabolism.

Alarge body of evidence implicates the high-triglyceride, low-HDL
phenotype in atherosclerosis (12). Accelerated atherosclerosis in the
setting of insulin resistance could thus result from the direct entry of
atherogenic VLDL-derived particles into the vasculature, or decreased
availability of HDL particles to participate in unloading of cholester-
ol from the vasculature, known as reverse cholesterol transport.

Hyperglycemia and hypertension

In addition to fueling potentially proatherogenic dyslipidemia,
insulin resistance increases glucose. The lack of insulin signal-
ing decreases transport of glucose into peripheral tissues such
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Systemic insulin resistance produces a proatherogenic lipid phenotype. Early in the course of systemic insulin resistance, FFAs increase because
of loss of the suppressive effects of insulin on lipolysis in adipocytes. Fatty acids are transported to the liver, where the availability of lipid stabilizes
the production of apoB, the major apolipoprotein of VLDL particles. Decreased insulin signaling dampens degradative pathways for apoB, which
also contributes to increased VLDL production. Lipoprotein lipase, found in the endothelium of peripheral capillaries and rate-limiting for the clear-
ance of triglyceride-rich lipoproteins, is decreased in insulin resistance. Hence, hypertriglyceridemia in insulin resistance (reflecting elevated VLDL
particles) occurs because of a combination of increased VLDL production and decreased VLDL clearance. VLDLs are metabolized to remnant
lipoproteins, which can promote atheroma formation. The presence of increased VLDL particles also affects HDL metabolism. Triglycerides in
VLDL are transferred to HDL through the action of cholesteryl ester transfer protein (CETP). This process results in a triglyceride-enriched HDL

particle that is more rapidly cleared from the circulation, leaving fewer HDL particles to accept cholesterol from the vasculature.

as muscle and fat and increases endogenous glucose production
by the liver. Elevated plasma glucose is sensed by the pancre-
atic P cell, which increases insulin secretion to compensate for
hyperglycemia, resulting in circulating hyperinsulinemia. With
continued stimulation of insulin secretion caused by peripheral
insulin resistance, f cell hypertrophy occurs, and over time the
B cell fails to secrete insulin normally (13). The cause of f§ cell
dysfunction is unclear, but increased fatty acids, increased glu-
cose, or both may contribute. Ongoing p cell failure ultimately
leads to type 2 diabetes.

Many people with insulin resistance have elevated levels of glu-
cose, though not to the arbitrary level that constitutes a diagnosis
of diabetes. Epidemiologic evidence shows a progressive relation-
ship between cardiovascular disease and glycemia beginning at a
fasting glucose level of 70 mg/dl and a hemoglobin A1C level of
5%, values well below those seen in diabetes (14, 15, S1).
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The relationship between insulin resistance and hypertension is
not as clear. Infusion of fatty acids into the portal vein activates the
sympathetic nervous system and elevates blood pressure in rodents
(16). Obesity alone is associated with activation of the sympathetic
nervous system, which can increase sodium reabsorption (17). Obe-
sity is also associated with elevated leptin levels, which may elevate
blood pressure (18). Underappreciated is the fact that intraabdomi-
nal obesity in insulin resistance could affect kidney function and
blood pressure through direct compressive effects. The prevalence
of insulin resistance among patients with hypertension is less than
in those with hypertriglyceridemia or hyperglycemia (19).

Beneficial vascular interventions in insulin resistance

Treating insulin-resistant patients with statins (LDL-lowering
agents) or angiotensin-converting enzyme (ACE) inhibitors (blood
pressure-lowering agents) decreases atherosclerotic complications.
Number 7
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Table 1
Summary of beneficial interventions in insulin resistance

Study Subjects Treatment
Statin use in insulin resistance
Heart Protection Study Type 2 diabetes Simvastatin
or vascular disease versus placebo
CARDS Type 2 diabetes Atorvastatin
and no known versus placebo
vascular disease
LIPID trial Known vascular Pravastatin
disease versus placebo
Interruption of renin-angiotensin system in insulin resistance
HOPE trial Vascular disease Ramipril
or diabetes versus placebo
LIFE trial Diabetes and Losartan
hypertension versus atenolol

review series

Major outcomes

Decrease in vascular events for entire cohort, subset with diabetes,
and those with diabetes and low LDL; decrease in total mortality
for entire group

Decrease in vascular events; nearly significant decrease in total
mortality(P = 0.059)

Decrease in vascular events and total mortality for entire cohort;
decrease in vascular events for subset with impaired fasting glucose

Decrease in vascular events and total mortality for entire cohort;
decrease in vascular events in subset with diabetes; decrease in
new-onset diabetes

Fewer vascular events and lower total mortality in losartan group

CARDS, Collaborative Atorvastatin Diabetes Study; LIPID, Long-Term Intervention with Pravastatin in Ischemic Disease; HOPE, Heart Outcomes Preven-
tion Evaluation; LIFE, Losartan Intervention for Endpoint Reduction in Hypertension.

These benefits accrue despite the fact that LDL cholesterol levels are
not usually elevated in insulin resistance and hypertension is less
closely associated with insulin resistance than are other metabolic
abnormalities. Results of illustrative trials are shown in Table 1.

The Heart Protection Study (20, 21) compared simvastatin with
placebo in more than 20,000 adults with either known atheroscle-
rosis or diabetes. Total mortality was significantly decreased in
patients receiving statin therapy. In a subset analysis of the 5,348
people with type 2 diabetes in the study, vascular events were sig-
nificantly decreased with statin therapy. Benefits were seen in the
substantial number of these patients with LDL cholesterol levels
below 116 mg/dl. The Collaborative Atorvastatin Diabetes Study
(CARDS) compared atorvastatin with placebo in 2,838 patients
with type 2 diabetes without known atherosclerosis (22). The
primary endpoint of vascular events was significantly decreased
with statin therapy, and total mortality was nearly significantly
decreased with treatment. The Long-Term Intervention with Pravas-
tatin in Ischemic Disease (LIPID) trial was a secondary preven-
tion trial comparing pravastatin with placebo that demonstrated
decreased mortality with statin treatment. It included 940 patients
with impaired fasting glucose (23), likely an insulin-resistant
cohort since mean triglycerides in this group were over 150 mg/dl.
Vascular events were significantly decreased in this group.

The Heart Outcomes Prevention Evaluation (HOPE) trial (24)
compared the ACE inhibitor ramipril with placebo in over 9,000
patients with either vascular disease or diabetes. Total mortality
was decreased in those receiving ramipril. Treatment decreased
vascular events among the 3,577 participants with diabetes.
Ramipril also decreased the onset of new diabetes, an unexplained
observation (suggesting that ACE inhibition causes insulin sensiti-
zation that protects the 3 cell from continued hypersecretion) that
is also seen in other studies of ACE inhibition (25). The Losartan
Intervention for Endpoint Reduction in Hypertension (LIFE) trial
compared treatment with an angiotensin receptor blocker (losar-
tan) versus a 3-blocker (atenolol) in over 1,000 patients with diabe-
tes and hypertension (26). Total mortality and the vascular events
were decreased in the losartan group.

Rationale for modulating insulin resistance
to treat atherosclerosis
Given the plausible relationships among insulin resistance, lipid
metabolism, glucose metabolism, and atherosclerosis, it was rea-
sonable to pursue strategies that would treat insulin resistance
itself to address multiple coexisting abnormalities. This approach
was supported by several studies showing a relationship between
insulin levels and cardiovascular risk. The Paris Prospective Study,
which included over 7,000 males (27); a study of over 1,000 males
in Finland (28); and the Multiple Risk Factor Intervention Trial
(MRFIT) (29) reported positive relationships between insulin lev-
els and atherosclerotic events. However, at least 3 studies in the
US (reviewed in ref. 30) failed to confirm this relationship, and 1
actually reported an inverse relationship between insulin levels and
vascular disease. More direct support for the involvement of insu-
lin resistance in atherosclerosis came from the Insulin Resistance
Atherosclerosis Study (IRAS). This study tested the hypothesis that
insulin sensitivity was associated with atherosclerosis and detected
an inverse relationship between carotid intima-medial thickness
and insulin sensitivity. This finding, however, was tempered by the
fact that this relationship between carotid thickness and insulin
sensitivity was present in some ethnic groups but not others and
was no longer significant after correction for glucose tolerance
(31). Recent reports suggest that the metabolic syndrome (with its
implied insulin resistance) does not appear to impart vascular dis-
ease risk exceeding its components (32). In both the Atherosclerosis
Risk in Communities Study and the West of Scotland Coronary
Prevention Study (33, S2), vascular disease was related to compo-
nents of the metabolic syndrome but not uniquely to the syndrome
itself. The presence of the metabolic syndrome appears to predict
new cases of diabetes but is inferior to the Framingham Risk Score
as a predictor of clinical events related to atherosclerosis (34, S2).
A concrete conceptual framework for developing new thera-
pies was provided by the discovery of PPARs in the early 1990s.
PPARs (37) are ligand-activated nuclear receptors that form het-
erodimers with the retinoid X receptor to affect the expression
of genes involved in lipid metabolism, glucose metabolism, and
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Table 2
Summary of trials using PPAR activation

Decrease in coronary events in this primary prevention trial; no effect on vascular disease death;

Decrease in vascular events and vascular death in this primary prevention trial; no effect on total

mortality (rate [per 1,000]: 21.9 for gemfibrozil, 20.7 for placebo)

Decrease in vascular events in this secondary prevention trial; nearly significant decrease in vascular

death (P =0.07); no effect on total mortality (9.9% deaths for gemfibrozil, 10.9% deaths for placebo)

No effect on vascular events; apparent benefit in post hoc analysis of subset of patients with

triglycerides over 200 mg/dl; no effect on total mortality (10.4% deaths for bezafibrate,

No effect on primary endpoint of coronary events; decreased secondary endpoint of total

cardiovascular events (P = 0.035); nonsignificant increase in coronary heart disease mortality
and total mortality (rate: 14.2 for fenofibrate, 12.9 for placebo)

Study Agonist Major outcomes
PPARc. agonists
WHO cooperative trial Clofibrate
increase in total mortality (P< 0.01)
Helsinki Heart Study Gemfibrozil
VA-HIT Gemfibrozil
BIP study Bezafibrate
9.9% deaths for placebo)
FIELD study Fenofibrate
PPARy agonist
PROACTIVE Pioglitazone

No effect on primary endpoint of all vascular events in this secondary prevention trial; decreased

secondary endpoint of death, nonfatal myocardial infarction, CVA (P = 0.027); no effect on total
mortality with fewer overall deaths in pioglitazone group

VA-HIT, Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial; BIP, Bezafibrate Infarction Prevention; FIELD, Fenofibrate Intervention
and Event Lowering in Diabetes; PROACTIVE, Prospective Pioglitazone Clinical Trial in Macrovascular Events.

inflammation. Their potential role in insulin resistance is logical,
since their endogenous ligands are postulated to be fatty acids.
The first PPAR identified, PPARa, is the target of fibrates, drugs
known to lower triglycerides and increase HDL cholesterol, 2 of
the defining components of the metabolic syndrome. PPARY is
the target of thiazolidinediones, drugs that lower glucose and
substantially enhance insulin sensitivity.

For both PPARa and PPARY, data support the concept that
pharmacologic activation of these receptors provides vascular
benefits. Treatment of insulin-resistant ob/ob mice and Zuck-
er diabetic rats with a PPARa agonist decreased adiposity and
lowered insulin levels (36). Clamp studies in a lipoatrophic
mouse model showed enhanced insulin sensitivity at the liver
with PPARo. agonist treatment (37). Administration of a PPARa.
activator to mice, especially in the presence of a transgene for
apoA-I (a major component of HDL), decreased experimental
atherosclerosis (38). One study in humans reported a decreased
incidence of new cases of type 2 diabetes in insulin-resistant
patients treated with bezafibrate, suggesting that PPARa acti-
vation would enhance insulin sensitivity (39). Treatment of
male LDL receptor-null mice with 2 different PPARy agonists
or the PPARa-specific agonist GW7647 decreased experimental
atherosclerosis and inhibited foam cell formation (40, 41). In
another mouse model, PPARo but not PPARy agonists decreased
atherosclerosis (42).

Modulation of PPARs and insulin sensitivity in humans

Despite these encouraging results, findings with PPAR activation in
humans to treat atherosclerosis have been mixed (Table 2). Several
studies have used PPARa agonists to decrease vascular endpoints.
The first, the WHO cooperative trial on primary prevention of isch-
emic heart disease, used clofibrate. Initial results reported in 1978
showed a significant decrease in nonfatal myocardial infarction
but no significant effect on death from ischemic heart disease (43).
However, follow-up studies published in 1980 and 1984 revealed
1816
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significant increases in total mortality in those treated with clo-
fibrate (44, 45). No specific cause of death could be identified.
This unsettling observation has not yet been explained.

The Helsinki Heart Study used another fibrate, gemfibrozil,
and reported decreased myocardial infarctions and cardiac death
with treatment (46). Overall, there were 45 deaths with gemfi-
brozil and 42 with placebo. In the Veterans Affairs High-Density
Lipoprotein Cholesterol Intervention Trial (VA-HIT), gemfibro-
zil also decreased myocardial infarctions and nearly significantly
decreased death due to coronary heart disease (47). Overall, there
were 198 deaths with gemfibrozil and 220 with placebo. A larger
study of patients with similar lipid characteristics, the Bezafibrate
Infarction Prevention (BIP) study, used a different fibrate and
found no significant effect of PPARa activation on cardiac end-
points (48). Overall, there were 161 deaths with bezafibrate and
152 with placebo. Very recently, the Fenofibrate Intervention and
Event Lowering in Diabetes (FIELD) study compared the effects
of fenofibrate and placebo in 9,795 patients with type 2 diabe-
tes, some with previous cardiovascular disease but most without.
Fenofibrate lowered triglycerides as well as LDL cholesterol and
elevated HDL cholesterol, all potentially beneficial, but did not
decrease the number of patients reaching the primary endpoint
of coronary events (49). Several adverse endpoints appeared to be
more likely with PPARa activation in this insulin-resistant cohort.
Overall, there were 356 deaths with fenofibrate and 323 with pla-
cebo. Interpretation of this study is complicated by differential use
of statins in the study groups (51).

Currently, the results of 1 clinical study that address the role of
PPARYy activation in atherosclerotic endpoints are available. The
Prospective Pioglitazone Clinical Trial in Macrovascular Events
(PROACTIVE) was a secondary prevention trial that compared the
effects of pioglitazone and placebo in 5,238 patients with type 2
diabetes and known vascular disease (50). The use of this insulin
sensitizer lowered glucose as well as triglycerides, elevated HDL
cholesterol, and lowered blood pressure but failed to affect the
Volume 116

Number7  July 2006



Excess delivery of
lipids and glucose

Disrupti_Ein of promoters §
enhanciﬁglrepair and

limiting inflammation

Insulin resistance

number of patients reaching the primary endpoint of any cardio-
vascular event plus total mortality. Overall, there were 177 deaths
with pioglitazone and 186 with placebo. There was a beneficial
effect in terms of the secondary endpoint (a composite of mortality,
nonfatal myocardial infarction, and stroke), but pioglitazone also
increased body weight, LDL cholesterol levels, and heart failure.
PPARYy activation promotes the storage of lipid in fat cells; lower-
ing of triglycerides reflects the conversion of VLDL particles to LDL
particles; and glitazones accelerate sodium absorption at the renal
collecting duct (51, 52) to expand plasma volume and increase the
risk for heart failure. Enhanced reabsorption of sodium has been
known for decades to accompany insulin action (53).

Dual agonists affecting PPARa (to lower triglycerides and
increase HDL cholesterol) and PPAR (to lower glucose) have been
generated in hopes of treating the metabolic syndrome and insulin
resistance. These drugs appear to have an undesirably high inci-
dence of atherosclerosis-related events (54).

One interpretation of these results is that activation of PPARs
with current agents may not provide robust cardiovascular ben-
efit. It also appears that therapies directed at lowering glucose in
people with insulin resistance may not provide striking benefits.
Lowering glucose with sulfonylureas or insulin in the United King-
dom Prospective Diabetes Study did not result in a statistically
significant benefit in terms of atherosclerotic endpoints. Treat-
ment of a subset of obese patients with the insulin sensitizer met-
formin, which has complex effects including activation of AMP
kinase, decreased aggregate macrovascular events compared with
conventional therapy (55). Curiously, the addition of metformin
treatment to sulfonylurea treatment increased the patients’ risk of
diabetes-related death (55).

Potential strategies in development

Pharmacologically reversing insulin resistance in people with
obesity and diabetes may ultimately be shown to decrease vascu-
lar disease. However, approaches to alleviating insulin resistance
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Figure 2

Nutrient excess, organelle stress, and the
development of atherosclerosis and insulin
resistance. The excess delivery of glucose,
lipids, and other nutrients disrupts homeo-
stasis at key organelles, leading to genomic
and ER stress. Increased fuel flow is associ-
ated with increased mitochondrial metabolism
with the potential for excessive generation of
reactive oxygen species, leading to mitochon-
drial dysfunction. The nuclear genome may
be affected by oxidative modifications and by
structural alterations due to the accumulation
of intracellular lipids, both of which may disrupt
repair mechanisms as well as transcriptional
responses that minimize inflammatory dam-
age. Excessive demand on the ER induces
stress responses that lead to inflammation.
Genomic and ER stress could be adaptive in
the short term, since decreased insulin signal-
ing would limit additional uptake of nutrients
and increased macrophage activation would
clear toxic lipids. However, these independent
processes stimulated by organelle stress ulti-
mately become maladaptive in the setting of
continued nutrient excess.

Atherosclerosis

(especially in the absence of therapeutic lifestyle interventions that
involve achieving a negative energy balance) may actually acceler-
ate atherosclerosis. Antagonism of cannabinoid-1 (CB1) receptors
is one strategy that may be used in treating patients with insulin
resistance. CB1 receptors are generally found in the brain, and their
activation has complex effects on feeding, metabolism, and addic-
tive behaviors. CB2 receptors are found on immune cells including
monocyetes, a critical cell in atherosclerosis. Rimonabant is a CB1
receptor blocker that appears to improve features of the metabolic
syndrome and bring about favorable changes in markers for insu-
lin resistance (56, S3), albeit with side effects that include nausea,
depression, and anxiety. The pharmacology of drugs that interact
with these receptors is complex, and CB1 antagonists have also
been shown to have inverse agonist activity at CB2 receptors (57).
Since activation of CB2 receptors (which are abundant in human
and mouse atherosclerotic lesions) decreases atherosclerosis and
macrophage activation in mice (58), it is possible that, like the use
of other agents directed toward insulin resistance, CB1 blockade
could improve parameters associated with insulin resistance with-
out decreasing atherosclerotic complications.

While several types of vascular cells are involved in atherosclero-
sis, the monocyte/macrophage appears to be central to the initia-
tion and evolution of the vascular lesion. Inactivation of mono-
cyte chemoattractant protein-1, a potent chemokine agonist for
monocyetes, or its receptor CCR2 decreases vascular disease in mice
(59, 60). Mice with defects in the differentiation of monocytes into
macrophages because of M-CSF deficiency are protected from
atherosclerosis (61). Macrophage development is also controlled
in part by protein tyrosine phosphatase 1B (PTP1B). PTP1B, an
ER-based phosphatase that causes insulin resistance by reversing
tyrosine phosphorylation of the insulin receptor and decreasing
downstream PI3K activity (62), suppresses macrophage develop-
ment and activation (63). Inactivation of PTP1B enhances insulin
sensitivity in mice, an observation that has prompted the search
for small-molecule inhibitors of this phosphatase. One prediction
Volume 116 1817
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is that these agents would lower glucose and lipid levels but pro-
mote the activation and development of macrophages, which
would accelerate atherosclerosis or perhaps nullify vascular ben-
efits of improved glucose and lipid profiles.

Could insulin resistance in the vasculature

be beneficial?

Since current pharmacologic therapies aimed at decreasing insu-
lin resistance do not yet appear to provide large decreases in ath-
erosclerotic complications, could it be that insulin resistance in
the vasculature is actually a beneficial adaptive response? There is
precedent for dampening hormone signaling in response to stress.
With both chronic illness in the outpatient setting and severe
illness in hospitalized patients, levels of triiodothyronine (the
active form of thyroid hormone) decrease (64). Administration of
thyroid hormone in the setting of illness has not been shown to
improve outcomes (65, S4), and there is evidence suggesting that
the low-thyroid state could be a beneficial adaptive response in
terms of protein catabolism (66).

Expression of the inflammatory cytokine TNF-a is increased in
obesity and causes insulin resistance by interfering with tyrosine
phosphorylation of the insulin receptor as well as insulin receptor
substrate-1 (IRS-1) (67). Given the inflammatory nature of ath-
erosclerosis, most have assumed that TNF-a is proatherogenic,
but inactivation of one of the receptors for this cytokine in mice
increases atherosclerosis (68). TNF-a increases macrophage expres-
sion of a key protein responsible for unloading cholesterol and
presumably limiting atherosclerosis, ATP-binding cassette-Al, in
a manner that appears to be dependent on NF-kB, a transcription
factor that coordinates inflammatory responses (69). These results
are consistent with the observation that inactivation of NF-kB
increases vascular disease in mice (70) and raise the possibility that
the vasculature may attempt to limit the acquisition of cholesterol
through processes related to insulin resistance.

Insulin resistance is the consequence of disruption of signaling
pathways initiated by the tyrosine kinase activity of the insulin
receptor. There is abundant cross-talk between signals generated
by the insulin receptor and other growth factor receptors such as
PDGEFR that converge on MAPK pathways (71). Both the insulin
receptor and PDGFR ultimately cause phosphorylation of Shc,
although with different time courses (72). Both associate with
PTP1B (73), the phosphatase that dampens signaling. PDGF, like
insulin, is capable of stimulating glucose transport when sufficient
PDGEFRs are present (74). Imatinib, a tyrosine kinase inhibitor that
affects a number of targets including PDGFR, the KIT receptor,
and BCR-ABL (SS), decreases cholesterol-induced atherosclerosis in
amodel of accelerated smooth muscle migration (75). Thus, global
resistance to growth factor signaling that might occur in the set-
ting of insulin resistance could serve to attenuate vascular disease.

Systemic insulin resistance, which increases levels of glucose and
lipids, is not desirable. However, insulin resistance in cells directly
relevant to atherosclerosis may have different effects. Conflicting
data address this issue in mouse models. Inactivation of the insu-
lin receptor in cells of myeloid lineage decreases atherosclerosis in
apoE-null mice (76). Macrophage deficiency of IRS-2, the major
insulin receptor substrate in this cell type, also decreases vascular
disease in apoE-null mice (76), suggesting that vascular insulin
resistance could be beneficial. In another model, LDL receptor-null
mice, macrophage deficiency of the insulin receptor had no effect
on initial lesion formation (77). However, lesions in these animals
1818
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became more complex at later time points because of accelerated
apoptosis occurring in the setting of increased ER stress (see below).
These data suggest that insulin resistance could have differential
effects on lesion initiation, propagation, and plaque rupture.

PI3Ks, enzymes that generate phosphorylated lipid signaling
molecules after stimulation by the insulin receptor and other
receptors, exist in several isoforms. PI3Ky is found in hematopoi-
etic cells, especially monocytes and macrophages, and its inhibi-
tion by small molecules has beneficial effects on inflammation in
addition to lifespan in models of systemic lupus and rheumatoid
arthritis (78, 79), diseases associated with accelerated atheroscle-
rosis. Modulation of the activity of this kinase in appropriate
models of vascular disease could help clarify the role of insulin
signaling in vascular disease.

Mitochondrial stress

An alternative view of the relationship between insulin resistance
and atherosclerosis is that they share a common etiology but each
follows an independent course. The common etiology may be
organelle stress in response to nutrient excess occurring in mito-
chondria, the nucleus, and the ER (Figure 2).

Mitochondria are the major source of ATP production in ani-
mals. Production of ATP results in the production of reactive oxy-
gen species as electrons are transferred from nutrients to molecu-
lar oxygen. This process, known as respiration, takes place at the
inner mitochondrial membrane and is responsible for most of the
generation of reactive oxygen species such as superoxide that are
implicated in atherosclerosis. In addition to its proximity to reac-
tive oxygen species, the mitochondrial genome may be particularly
susceptible to oxidative damage because of its lack of histones and
a deficient mismatch repair system. This combination could be
responsible for heteroplasmy, the presence of both normal and
mutated mitochondrial DNA in tissues (80). Mitochondrial dys-
function may be involved in skeletal muscle insulin resistance.
Expression of genes critical for mitochondrial function, such as
the gene encoding PGC-1a, is decreased in humans with insu-
lin resistance (81). Energy production is impaired in the muscle
of insulin-resistant subjects (82). Recent findings also implicate
mitochondrial dysfunction in atherosclerosis.

As is noted above, insulin resistance causes circulating fatty acids
to increase. Increased oxidation of fatty acids by aortic endothelial
cells was recently reported to accelerate production of superoxide
by the mitochondrial electron transport chain (83). This effect was
associated with proatherogenic vascular effects, and prevented by
either blocking of the release of fatty acids from adipose tissue or
inhibition of mitochondrial fatty acid oxidation, consistent with a
role for increased mitochondrial metabolism in vascular disease.

Human atherosclerotic samples obtained during vascular sur-
gery show greater mitochondrial DNA damage than nonathero-
sclerotic samples obtained from age-matched transplant donors
(84). Mitochondrial damage precedes the development of ath-
erosclerosis and tracks with lesion extent in apoE-null mice, and
mitochondrial dysfunction caused by heterozygous deficiency of
a superoxide dismutase (SOD2) increases atherosclerosis and vas-
cular mitochondrial damage in the same model (84).

Blood vessels destined to develop atherosclerosis may be charac-
terized by inefficient ATP production due to the uncoupling of res-
piration and oxidative phosphorylation. Blood vessels have regions
of hypoxia (85), which is known to lower the ratio of state 3 (phos-
phorylating) to state 4 (nonphosphorylating) respiration (S6). The
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DNA damage disorders associated with insulin resistance and atherosclerosis

Molecular defect
De novo point mutation in lamin A
gene resulting in truncated protein
Mutation in WRN, a DNA helicase

Syndrome
Hutchinson-Gilford progeria

Werner

Ataxia telangiectasia Defect in ATM, a protein kinase

with p53 as a substrate

Cockayne Mutations in CSA and CSB,

involved in DNA repair

presence of abnormal mitochondria in smooth muscle cells is an
early signal of human atherosclerosis (S7). Atherosclerosis-suscep-
tible pigeons have uncoupled mitochondrial respiration at lesion-
prone sites (86). Human atherosclerotic lesions have been known for
decades to be deficient in essential fatty acids (87), a condition that
causes respiratory uncoupling (88, S8) and atherosclerosis (89).

The inducible expression of uncoupling protein 1 (UCP1), the
prototypical inner mitochondrial membrane anion transporter
found in brown fat, in the vasculature increases atherosclerosis and
several markers of oxidative damage in apoE-null mice (90). Mito-
chondrial dysfunction resulting from UCP1 expression in blood
vessels causes renin-dependent hypertension (90), and a mitochon-
drial mutation associated with hypertension has been described
in humans (91). Uncoupling increases respiration, which might
account for evidence of increased oxidative modifications. For rea-
sons that are unclear, brown fat, the tissue defined by respiratory
uncoupling, encases chest and neck blood vessels in humans (92).

Most fatty acid oxidation, which is promoted by PPARa. activa-
tion, occurs in mitochondria. Mitochondrial effects could explain
why PPARa-deficient mice are protected from diet-induced insulin
resistance and atherosclerosis (93) as well as glucocorticoid-induced
insulin resistance and hypertension (94). Caloric restriction, which
improves features of insulin resistance, increases mitochondrial bio-
genesis and, surprisingly, enhances the efficiency of ATP production
(95, 89). Dysfunctional mitochondria in cultured cells can be rescued
by transfer of mitochondria from adult stem cells (96), raising the
possibility of restoration of normal bioenergetics in the vasculature
to treat atherosclerosis associated with insulin resistance.

Nuclear stress
Genomic stress, an alteration of DNA structure or function fre-
quently caused by oxidative modifications, is another likely con-
tributor to both atherosclerosis and insulin resistance. Both ath-
erosclerosis and insulin resistance are manifestations of aging, a
process characterized by accumulation of DNA damage. Different
regions of the genome appear to manifest differential susceptibil-
ity to DNA damage. The promoters, but not the coding regions,
of downregulated genes in the aging human brain have striking
increases in the oxidation product 8-oxoguanine, and many genes
are upregulated, generally those involved in antioxidant effects,
DNA repair, and stress responses (97). It is plausible that genes
specifically involved in maintenance of vascular integrity and insu-
lin sensitivity are preferentially affected by oxidative damage.
Several well-described disorders are consistent with this premise
(Table 3). Children with Hutchinson-Gilford progeria syndrome
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Phenotype

Atherosclerosis, insulin resistance, hyperglycemia, growth retardation,
lipodystrophy, osteoporosis, hair and skin abnormalities

Atherosclerosis, malignancies, insulin resistance, central adiposity,
dyslipidemia, autoimmunity, osteoporosis

Cerebellar ataxia, skin and eye telangiectasias, malignancies, immune
deficiency, impaired growth, insulin resistance, atherosclerosis
in heterozygotes

Neurodegeneration, ataxia and mental retardation, atherosclerosis,
insulin resistance, dyslipidemia, impaired growth

have insulin resistance and usually die before the age of 15 from
coronary or peripheral vascular disease (98, 99). A progressive
smooth muscle cell defect characterizes mice carrying the muta-
tion most commonly found in humans (100). Progeroid disorders
are associated with the accumulation of a farnesylated form of
prelamin A that disrupts DNA repair (101), and clinical features
are ameliorated in mice with a drug that inhibits farnesylation
(102). Statins, inhibitors of HMG-CoA reductase, also decrease
farnesylation, which could implicate enhanced genomic main-
tenance in the benefit people with diabetes derive from statins
even when cholesterol levels are low (21). Patients with Werner
syndrome, caused by a mutation in a DNA helicase (103), have
insulin resistance and vascular disease in addition to other seri-
ous problems, including malignancies (104, 105). Ataxia telangi-
ectasia is particularly interesting, because the protein mutated in
this disease, ATM, is a kinase that activates the tumor suppressor
p53 (106). p53 is found in atherosclerotic lesions from humans
and rabbits (107, 108), and p53-null mice have accelerated ath-
erosclerosis (109, 110). The protein most commonly mutated
in Cockayne syndrome, CSB, appears to be involved in multiple
processes, including transcription, nucleotide excision repair,
and base excision repair (111). The mechanisms by which DNA
maintenance defects in these disorders lead to atherosclerosis and
insulin resistance are unknown.

ER stress

ER stress also represents a potential common etiology for insulin
resistance and atherosclerosis. Both dietary and genetic models of
obesity disrupt normal protein folding in the ER, leading to stress
signals mediated in part by JNK (112). One of the JNK isoforms,
JNK2, has been shown to be proatherogenic in macrophages (113),
and cholesterol trafficking to the ER activates JNK2 in macrophages
(114). Saturated fatty acids may induce ER stress (115). Recent data
are consistent with lipid loading causing ER stress, which induces
cleavage of the ER-bound transcription factor CREBH, allowing
this activated protein to migrate to the nucleus and produce a
systemic inflammatory response by increased expression of acute-
phase response genes (116). As is noted above, deficiency of the
insulin receptor in macrophages increases the ER stress response
and apoptosis in a mouse model of atherosclerosis (77).

Additional potential mechanisms

Surprising results from long-term follow-up of type 1 diabetes sub-
jects in the Diabetes Control and Complications Trial suggest that
glucose control may provide vascular-disease benefits exceeding those
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achieved with lipid and blood pressure lowering (117). These benefits
are particularly interesting because they were seen in individuals who
were subjected to a remote period of intense glucose control, imply-
ing that the vasculature has “memory,” with adverse events perhaps
reflecting metabolic states from years before. It is unclear whether
this effect represents decreased initiation of lesions during the period
of optimal control that is reflected years later as these lesions propa-
gate. If this is relevant to insulin resistance, individuals could show
benefits years after periods of optimal glucose control. One potential
explanation is that these periods of improved glucose control alter
the host/bacteria relationship. Periodontal disease is common in dia-
betes (118) and has been linked to atheroma formation in humans
(119), and colonization of mice with a periodontal disease pathogen
promotes atherosclerosis (120), perhaps through an interaction with
TLR2 and TLR4 (proatherogenic components of the innate immune
system). Intestinal bacteria appear to control nutrient processing and
modulate body composition in mice (121).

The mouse may not be an optimal model for examining
the effects of glucose on atherosclerosis, but recent findings
indicate that the enzyme aldose reductase, long thought to be
involved in some microvascular complications of hyperglyce-
mia, accelerates vascular disease in this species (122). It may be
possible to inhibit this pathway to treat atherosclerosis (123) in
people with insulin resistance.

Fatty acids are central to the metabolic disturbances that char-
acterize insulin resistance and atherosclerosis, in part because they
drive increased production of lipoproteins by the liver. In addition

to delivering lipids to macrophages to induce cellular stress, these
lipid particles may modulate the immune system to promote ath-
erosclerosis. Hyperlipidemia appears to promote the retention of
apoptotic debris in the vasculature, thereby enhancing the inflam-
matory response (124). ApoE (a key component of VLDL particles
elevated in insulin resistance) appears to be capable of efficiently
activating T cells by delivering lipid antigens, which likely partici-
pate in atherosclerosis, to CD1 molecules (125).

Conclusions

Insulin resistance appears to be a simple but deceptive explanation
for the development of atherosclerosis in people with obesity and
diabetes. Systemic insulin resistance has proatherogenic effects.
But treatment with insulin sensitizers to decrease vascular disease
has yielded mixed results, perhaps because insulin resistance in
the vasculature may not promote atherosclerosis. Until the mecha-
nisms underlying insulin resistance and atherosclerosis are better
understood, optimal therapy for overweight patients at risk for
vascular disease should include interventions easy to recommend
and difficult to realize: eat less and exercise more.

Note: References S1-S9 are available online with this article;
doi:10.1172/JCI29024DS1.
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