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Introduction
Multisystem inflammatory syndrome in children (MIS-C) is a rare yet 
life-threatening hyperinflammatory condition induced by infection 
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
(1). MIS-C shares clinical features with those of pediatric patients with 
severe COVID-19 (pCOVID-19) (2), including multiorgan pathology. 
While MIS-C and pCOVID-19 are not difficult to distinguish clinical-
ly, the heterogeneous, multiorgan tissue injury observed in patients 
with MIS-C resembles other childhood inflammatory disorders for 
which the mechanistic understanding, diagnosis, and treatment are 
less clear. Given the severity and heterogeneity of MIS-C symptom-
atology, there is a pressing need for early monitoring of systemic inju-
ry and inflammation in these patients to gain an understanding of the 
drivers of MIS-C immunopathology.

Circulating molecules of cell-free DNA (cfDNA) are short frag-
ments from nuclear or mitochondrial genomes released from dying 

or injured cells. cfDNA is present at low concentrations in the blood 
of healthy individuals, and levels are significantly elevated during 
pathological conditions (3–6). Owing to a short half-life in the blood 
(15–20 minutes) (7), cfDNA can serve as a real-time marker of a 
dynamic disease process. In adult COVID-19, increased nuclear 
cfDNA (n-cfDNA) and mitochondrial cfDNA (mt-cfDNA) correlat-
ed with disease severity and adverse outcomes (8–10), highlighting 
the value of cfDNA as an early and sensitive predictor of disease 
progression. Collection of both mt-cfDNA and n-cfDNA allows 
one to account for the different patterns observed (9, 10). Unlike 
n-cfDNA, mt-cfDNA can be released from intact physiological 
cells, not necessarily from injured or dying cells (11). The n-cfDNA 
released into the circulation is bound to nucleosomes and is pro-
tected from deoxyribonuclease degradation. mt-cfDNA is poorly 
protected and prone to degradation in the plasma (11). Plasma cfD-
NA carries stable DNA methylation signatures related to its tissues 
of origin (12–14). The tissue-specific DNA methylation signatures 
can be surveyed to identify the cfDNA tissue source. In COVID-19, 
plasma tissue–specific cfDNA, measured via whole-genome bisul-
fite sequencing, correlates with clinical markers of end-organ inju-
ry, disease severity, and outcomes (9).

The pathogenesis and triggers of tissue injury in MIS-C are not 
fully understood. Existing studies indicate that circulating inflam-
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samples from patients with pCOVID-19 and MIS-C upon admis-
sion to the Johns Hopkins Hospital; pHC data were collected at 
outpatient clinic visits. Baseline demographic and clinical charac-
teristics, laboratory results, treatments, and outcomes are shown 
in Table 1. No significant differences were observed in age, sex, 
race or ethnicity, or BMI among the MIS-C, pCOVID-19, and pHC 
groups. However, we observed significant baseline (upon hospi-
tal admission) elevations in the coagulation marker D-dimer (P 
= 0.026) and the cardiac marker pro-BNP (P = 0.032) in patients 
with MIS-C patients compared with patients with pCOVID-19. 
Peripheral white blood counts and other inflammatory markers 
were not different between the 2 groups. During hospitalization 
(days after admission), patients with MIS-C had significantly 
higher peak levels of D-dimer, C-reactive protein (CRP), troponin 
I (TnI), and pro–B-type natriuretic peptide (proBNP), as well as 
lower nadirs of lymphocytes and platelets, compared with patients 
with pCOVID-19 (P < 0.05 for all). Patients with MIS-C were sub-
stantially more likely to receive intravenous immune globulin 
(IVIG) treatment compared with patients with pCOVID-19 (85.7% 
and 7.1%, respectively).

Levels of cfDNA are higher in patients with MIS-C compared 
with patients with pCOVID-19. We hypothesized that MIS-C and 
pCOVID-19 show different tissue injury profiles that are indicative 
of distinct pathogenic mechanisms. We leveraged cfDNA as a sen-
sitive biomarker to quantify the burden and sources of tissue injury 
in MIS-C and pCOVID-19. We first isolated cfDNA (Figure 1A) and 
confirmed its cfDNA quality, which revealed an expected nucleoso-
mal distribution with a predominant peak at 167 bp corresponding to 

matory cells and cytokines contribute to the progression of MIS-C 
(15–19). Conversely, other studies reported normal levels of circu-
lating innate immune cells (20) and antibody responses in MIS-C, 
(21) highlighting the need to understand immune cell dynamics 
using alternative markers. Integrated analysis of cfDNA levels 
and immune processes (e.g., cytokine production) may provide a 
reliable marker to map the sources and severity of tissue injury in 
MIS-C and pCOVID-19. Of note, as a danger-associated molec-
ular pattern, cfDNA activates innate immune cells and triggers a 
proinflammatory response (22–27). cfDNA is a major structural 
component of neutrophil extracellular traps (NETs) (28) that are 
expelled by activated neutrophils and trigger a coagulation cas-
cade resulting in greater disease severity (29–31).

In this study, we performed whole-genome bisulfite sequenc-
ing to measure cell- or tissue-specific cfDNA as a measure of tis-
sue injury in MIS-C and pCOVID-19 patients. Early identifica-
tion of multiorgan tissue injury and a heightened innate immune 
response may lead to mechanistic insights to guide the diagno-
sis and treatment of MIS-C, pCOVID-19, and potentially other 
inflammatory diseases of childhood.

Results
Patient characteristics and clinical features. To define tissue injury 
patterns and inflammatory responses in patients with MIS-C and 
pCOVID-19, we performed an integrated analysis of plasma cfD-
NA and cytokines (Figure 1A). Our analysis included 28 pediatric 
patients (14 with acute pCOVID-19 and 14 with MIS-C) and 35 
pediatric healthy controls (pHCs). We collected baseline plasma 

Figure 1. Elevated total cfDNA in 
patients with MIS-C. (A) Overview 
of study design and experimental 
workflow. (B and C) Concentrations 
of plasma n-cfDNA and mt-cfDNA in 
pHCs, patients with pCOVID-19, and 
patients with MIS-C. (D) ROC curve of 
n-cfDNA levels to distinguish MIS-C and 
pCOVID-19. cfDNA values are presented 
as cp/mL of plasma (log10-transformed). 
*P < 0.05, **P < 0.01, ***P < 0.001, and 
****P < 0.0001, by Kruskal-Wallis test 
followed by Dunn’s multiple compari-
sons to compare tissue-specific cfDNA 
profiles among groups (B and C).

https://doi.org/10.1172/JCI171729
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centrations were 5.2 and 30 times higher, respec-
tively, in patients with MIS-C (median [IQR]: 92,667 
[60,819–187,788] cp/mL) compared with patients 
with pCOVID-19 (median [IQR]: 17,882 [7,036–
39,934] cp/mL) and pHCs (median [IQR]: 3,072 
[2,888–4,743] cp/mL) (Figure 1B; P < 0.001). Nota-
bly, the median n-cfDNA level (Figure 1B; P < 0.001) 
in patients with pCOVID-19 was also higher than 
that in pHCs. Within the MIS-C group, patients with 
clinical indices suggestive of severe disease demon-
strated higher n-cfDNA compared with patients 
without the indices (Supplemental Table 1). Levels 
of mt-cfDNA were also significantly higher in both 
MIS-C and pCOVID-19 patients as compared with 
pHCs (Figure 1C; P < 0.01 for both), but there was 
no significant difference between the MIS-C and 
pCOVID-19 groups.

We next evaluated the ability of cfDNA 
levels to distinguish children with MIS-C from 
those with pCOVID-19. A receiver operator 
characteristic (ROC) curve analysis revealed 
good performance with an AUC of 0.89 (95% 
CI = 0.86–0.94) (Figure 1D; P = 0.0003) to dis-
criminate patients with MIS-C from those with 
pCOVID-19. Overall, patients with MIS-C had 
elevated total plasma cfDNA levels that, alone, 
indicated greater tissue injury compared with 
patients with pCOVID-19 and pHCs.

MIS-C has a distinct innate immune cell cfDNA 
pattern compared with pCOVID-19. We next sought 
to identify tissue sources for increased cfDNA lev-
els observed in MIS-C. After isolation and bisulfite 
treatment, cfDNA maintained the expected nucle-
osomal distribution (Supplemental Figure 1B). We 
performed whole-genome bisulfite sequencing 
to an average 169 ± 3.1 million reads per sample, 
resulting in a uniquely averaged mapping efficien-
cy of 89.53%. We observed high bisulfite conver-
sion efficiency (99.95% ± 0.004%). We leveraged 
a library of tissue-/cell-specific methylation signa-
tures of the 25 major cell or tissue types commonly 
involved in various disease conditions. Using this 
library, we performed deconvolution analysis using 
a meth_atlas algorithm (12) to deduce the relative 
contributions of different cell and tissue types to 
the plasma cfDNA pool. The fraction of each cell/
tissue type was multiplied by the total n-cfDNA 
concentration to compute the absolute copy num-
ber of tissue-/cell-specific cfDNA. In all patient 
groups, hematopoietic cells were the major pro-
ducers of cfDNA (Supplemental Figure 2A). Impor-

tantly, cfDNA derived from hematopoietic cells was increased in 
MIS-C compared with pCOVID-19 or pHCs (Figure 2A; P < 0.001).

Given the conflicting evidence about the frequency of cir-
culating immune cells in MIS-C (15–18, 20), we compared com-
plete blood count results and cfDNA from different immune cell 
types. The cfDNA profile exposed differences between MIS-C 

mononucleosome-bound DNA fragments (Supplemental Figure 1A; 
supplemental material available online with this article; https://doi.
org/10.1172/JCI171729DS1). We then quantified total plasma n-cfD-
NA and mt-cfDNA, measures of global cellular damage or death, by 
digital-droplet PCR using primers and probes targeting the nuclear 
and mitochondrial genomes, respectively. Strikingly, n-cfDNA con-

Table 1. Demographic and clinical characteristics of the study participants

Variables pHCs (n = 35) pCOVID-19 (n = 14) MIS-C (n = 14)

Age, yr (median, IQR) 12.4 (9.0–15.2) 11 (4.2–17.4) 12.2 (7.5–13.9)

Sex (n, %)
Female 18 (51.4%) 9 (64.3%) 6 (42.9%)
Male 17 (48.6%) 5 (35.7%) 8 (57.1%)

Ethnicity (n, %)
Hispanic 13 (37.1%) 5 (35.7%) 9 (64.3%)
Not Hispanic 22 (62.9%) 9 (64.3%) 5 (35.7%)

Race (n, %)
Black/African American 11 (31.4%) 3 (21.4%) 3 (21.4%)
White 13 (37.1%) 4 (28.6%) 2 (14.3%)
Asian 1 (2.9%) 1 (7.1%) 1 (7.1%)
Other 10 (28.6%) 6 (42.9%) 8 (57.3%)

BMI, kg/m2 (median, IQR) 23 (16.7–27.7) 22.4 (17–29) 23.3 (18.–29.8)

Chronic condition (n, %) 9 (64.3%) 5 (35.7%)

Immunocompromising condition (n, %) 3 (21.4%) 0 (0%)

Laboratory results (admission) median (IQR)
WBC, K/μL 9.9 (7.4–16.2) 8.2 ( 5.5–13.7 0
Neutrophils, K/μL 7.3 (2.3–12) 6.0 (3.0–7.3)
Lymphocytes, K/μL 1.9 (1.37–2.76) 0.72 (0.34–1.86)
Platelets, K/μL 263 (177.8–332.8) 134.5 (85.25–254.5)
CRP, mg/L 5.2 (1.6–9.14) 13.3 (5.8–17.4)
D-dimer, mg/L 1.2 (0.82–1.9) 2.3 (1.8–6.1)
TnI, ng/mL 0.04 (0.02–0.04) 0.04 (0.04–0.097)
ProBNP, pg/mL 176 (17.5–483.5) 976 (248–3482)
AST, μ/L 26 (19–48) 45 (32–67)
ALT, μ/L 33 (11.25–57) 42.5 (19.75–66.5)
Creatinine, mg/dL 0.35 (0.22–0.67) 0.4 (0.3–0.55)
Ferritin, μg/L 246 (200–612) 883 (253.5–1,160)

Need for supplementary O2 (n, %) 4 (28.6%) 8 (57.1%)

Need for ICU care (n, %) 5 (35.7%) 12 (85.7%)

Intubated (n, %) 0 (0%) 2 (14.3%)

Treatment (n, %)
Pressors 0 (0%) 7 (50%)
IVIG 1 (7.1%) 12 (85.7%)
Steroids 0 (0%) 6 (42.9%)
Aspirin 0 (0%) 3 (21.4%)
Methylprednisolone 0 (0%) 3 (21.4%)
Remdesivir 0 (0%) 2 (14.3%)

Chronic condition represents any chronic medical disease such as diabetes, hypertension, 
etc. Immunocompromising condition represents any genetic or acquired condition that 
compromises host immunity and requires medical care.

https://doi.org/10.1172/JCI171729
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NK cells from patients with MIS-C (Figure 2, C–E). To gain further 
insight into the potential contribution of the adaptive immune sys-
tem, we analyzed cfDNA levels derived from T cells and B cells. 
In both MIS-C and pCOVID-19 patients (compared with pHCs), 
B cell– and T cell–derived cfDNA levels were significantly elevat-
ed, either combined (Figure 2F; P < 0.001) or separately (Figure 
2, G and H; P < 0.01 for both), However, the levels of B cell– and 
T cell–derived cfDNA were not different between MIS-C and 

and pCOVID-19 that were not captured from the complete blood 
count. Absolute neutrophil count and platelet counts in the com-
plete blood count were similar between MIS-C and pCOVID-19 
(Supplemental Figure 2B). Strikingly, cfDNA levels from innate 
immune cells were significantly higher in patients with MIS-C 
than in patients with pCOVID-19 or pHCs (Figure 2B; P < 0.001). 
In particular, cfDNA levels from neutrophils, monocytes, and NK 
cells were significantly elevated in neutrophils, monocytes, and 

Figure 2. Exaggerated tissue injury pattern in patients with 
MIS-C. (A–R) Comparison of tissue-specific cfDNA derived 
from hematopoietic cells (A), innate immune cells (B), neutro-
phils (C), monocytes (D), NK cells (E), adaptive immune cells 
(F), T cells (G), B cells (H), MEPs (I), nonhematopoietic tis-
sues (J), hepatocytes (K), kidney cells (L), cardiac myocytes 
(M), digestive tissue (N), vascular endothelium (O), lung 
(P), pancreas cells (Q), and thyroid cells (R) in pHCs (n = 35), 
patients with pCOVID-19 (n = 14), and patients with MIS-C  
(n = 14). Tissue-specific cfDNA values are presented as cp/mL 
or copies/mL of plasma (log10-transformed). *P < 0.05,  
**P < 0.01, ***P < 0.001, and ****P < 0.0001, by Krus-
kal-Wallis test followed by Dunn’s multiple comparisons to 
compare tissue-specific cfDNA profiles among groups.

https://doi.org/10.1172/JCI171729
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cyte cfDNA levels (Supplemental Table 2). The levels of cardiac 
myocyte–derived cfDNA were 1.2- to 36-fold higher than the 
median levels for pCOVID-19 (Supplemental Table 3), indicating 
a varying degree of cardiac involvement in patients with MIS-C. 
Only 2 of 14 patients with MIS-C in our cohort had elevated gas-
trointestinal-derived (GI-derived) cfDNA levels (Figure 2N), and 
5 of 14 patients with MIS-C had elevated levels of vascular endo-
thelium–derived cfDNA (Figure 2O).

Although lung-derived cfDNA levels were high relative to 
levels in pHCs, we measured similar injury levels in lung cells 
from MIS-C and pCOVID-19 (Figure 2P). We also observed 
increased injury from endocrine systems such as the pancre-
as and thyroid (Figure 2, Q and R); higher thyroid-derived 
cfDNA levels were observed in 6 of 14 patients with MIS-C. 
Presumably reflecting heterogenous interindividual tissue 
injury, patients with MIS-C had different levels of elevated 
tissue-specific cfDNA levels. To further assess the potential 
implication of increased levels of innate immune cell cfD-

pCOVID-19 patients (Figure 2, F–H), suggesting that adaptive 
immune cells may not contribute significantly to the pathogenic 
differences between MIS-C and pCOVID-19. We also observed 
increased levels of cfDNA derived from megakaryocyte/eryth-
roid progenitors (MEPs) in patients with MIS-C compared with 
patients with pCOVID-19 or pHCs (Figure 2I; P < 0.001).

Patients with MIS-C have higher end-organ injury than do 
patients with pCOVID-19. High levels of cfDNA suggest exten-
sive systemic inflammation, tissue injury, and cell death (32, 
33). Consistent with the known clinical presentation of MIS-C 
involving multiple organ systems (2), we observed higher plas-
ma cfDNA levels derived from nonhematopoietic tissues (Figure 
2J; P < 0.001) in patients with MIS-C compared with those with 
pCOVID-19 and pHCs. In particular, we found markedly elevated 
cfDNA derived from solid organ tissue such as hepatocytes, kid-
ney cells, and cardiac myocytes in cells from patients with MIS-C 
compared with patients with pCOVID-19 (Figure 2, K–M). In our 
cohort, 13 of 14 patients with MIS-C had elevated cardiac myo-

Figure 3. cfDNA profile distinguishes MIS-C and pCOVID-19 with high performance. (A and B) PCA of cfDNA features to differentiate MIS-C from 
pCOVID-19. (A) Graph representing each patient sample with PC1 (Dim1) on the x axis and PC2 (Dim 2) on the y axis. The large shapes (red triangle for MIS-C 
and blue circle for pCOVID-19) represent the average or center of their respective groups, with the ellipses representing 95% CIs for where the true average 
may lie. The percentages on the axes indicate the amount of variability in the data explained by that axis. (B) cos2 plot of the representation for each 
dimension (Dim) of the PCA. The darker and larger the circle, the more that variable is represented by the dimension it is listed under. The color gradient 
and size of the circle on the right hand of the panel correlates color with approximate cos2 value. (C) ROC curve analysis of tissue-/cell-specific cfDNA 
measures at admission as a discriminatory marker between pCOVID-19 and MIS-C patients. cfDNA was derived from monocytes, neutrophils, cardiac myo-
cytes, NK cells, MEPs, kidney cells, and hepatocytes.

https://doi.org/10.1172/JCI171729
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NA in systemic injury, we examined the correlation between 
innate immune cell cfDNA and tissue-specific or cell-specific 
cfDNA measurements. Elevated immune cell–derived cfDNA 
in pediatric patients with or without MIS-C showed a marked 
correlation with cfDNA derived from solid organs, suggesting 
a coordinated innate immune response and multiorgan injury 
(Supplemental Figure 3A).

We next assessed whether tissue-specific cfDNA differenc-
es in MIS-C and pCOVID-19 patients were diagnostic classifi-
ers. Principal component analysis (PCA) revealed that cfDNA 

parameters separated MIS-C from pCOVID-19 by PC1 and PC2, 
with no overlap in 95% confidence ellipses (Figure 3A). The dif-
ferences between MIS-C and pCOVID-19 patients were primar-
ily driven by cfDNA originating from combined hematopoietic 
cells, combined nonhematopoietic tissue, innate immune cells, 
kidney cells, pancreatic cells, hepatocytes, and neutrophils (Fig-
ure 3B). Using ROC analysis (Figure 3C), monocyte-derived 
cfDNA showed the best discriminatory performance with an 
AUC of 0.949 (P < 0.0001) followed by neutrophils-derived 
cfDNA (AUC = 0.893, P = 0.0006), cardiac myocyte–derived 

Figure 4. Exaggerated myeloid-derived cytokine levels in MIS-C. (A) Comparison of plasma cytokine and chemokine levels in patients with MIS-C, 
patients with pCOVID-19, and pHCs. Cytokines with a significant difference between MIS-C and pCOVID-19 are shown. Other cytokines are represented in 
Supplemental Figure 4. Cytokine values are presented as picograms per milliliter (pg/mL; log10-transformed). (B) Graph of patient sample, with PC1 (Dim1) 
on the x axis and PC2 (Dim2) on the y axis. The large shapes (red triangle for MIS-C and blue circle for pCOVID-19) represent the average or center of their 
respective groups, with the ellipses representing 95% CIs of where the true average may lie. The percentages on the axes indicate the amount of variability 
in the data explained by that axis. (C) Cos2 plot of the representation of each variable for each dimension of the PCA. The darker and larger the circle, the 
more that variable is represented by the dimension it is listed under. The color gradient on the right hand of the panel correlates color with the approxi-
mate cos2 value. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001, by Kruskal-Wallis test followed by Dunn’s multiple comparisons and adjusted 
for multiple comparison using the Benjamini-Hochberg procedure.

https://doi.org/10.1172/JCI171729
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cfDNA (AUC = 0.801, P = 0.0058), NK cell–derived cfDNA 
(AUC = 0.786, P = 0.0088), MEP-derived cfDNA (AUC = 0.786, 
P = 0.0108), kidney-derived cfDNA (AUC = 0.755, P = 0.0244), 
and hepatocyte-derived cfDNA (AUC = 0.712, P = 0.05). cfD-
NA derived from lung, the primary target organ of COVID-19 
infection, did not discriminate MIS-C from pCOVID-19 (AUC 
= 0.538, P = 0.734). Taken together, the cfDNA profile indi-
cated multisystemic, yet heterogenous, tissue-specific cfDNA 
elevations, consistent with the clinical presentation of MIS-C. 
Our data indicate that increased tissue-specific cfDNA levels 
observed in MIS-C served as accurate classifiers for MIS-C and 
pCOVID-19.

Increased cytokine levels in patients with MIS-C compared with 
levels in patients with pCOVID-19. To further investigate the sys-
temic tissue injury/inflammation landscape observed in MIS-C, 
we measured plasma levels of 36 cytokines and chemokines using 
a multiplex cytokine assay. A correlation matrix of normalized 
cytokine levels indicated a strong positive correlation between 
inflammatory cytokines in all patients (Supplemental Figure 3B). 
Pairwise comparison identified 11 cytokines and chemokines that 
were elevated and 1 chemokine, MDC, that was lower in patients 
with MIS-C compared with those with pCOVID-19 (Figure 4A). 
The levels of 14 cytokines and chemokines (IL-15, IL-10, IL-13, 
IL-18, IL-1RA, IL-2Rα, IP-10, IL-6, IL-8, MCP-1, MCP-2, MCP-
4, eotaxin, eotaxin-3) were significantly different in both MIS-C 
and pCOVID-19 patients compared with pHCs (P < 0.05 and 
FDR < 0.1). Compared with pHCs, the levels of 7 cytokines were 
higher and the levels of 1 cytokine (MDC) were lower in patients 
with MIS-C. MDC levels were similar in pCOVID-19 patients and 
pHCs (Figure 4A and Supplemental Figure 4). PCA revealed dis-
tinct cytokine signatures for MIS-C and pCOVID-19 (Figure 4B), 
with a majority of innate immune cytokines being the principal 
components distinguishing MIS-C and pCOVID-19 (Figure 4C). 
Cytokines reliably distinguished MIS-C from pCOVID-19 (Sup-
plemental Figure 5). These included IL-6 (AUC = 0.883), MIP-1α 
(AUC = 0.878), IP-10 (AUC = 0.878), IL-10 (AUC = 0.847), IL-15 
(AUC = 0.827), IL-16 (AUC = 0.821), MIP-1β (AUC = 0.821), IL-8 
(AUC = 0.821), IL-1RA (AUC = 0.821), TNF-α (AUC = 0.770), 
IL-2Rα (AUC = 0.750), and MDC (AUC = 0.750). Together, these 
findings illustrate the shared and distinct pathogenic features of 
MIS-C and pCOVID-19 related to tissue injury and a dysregulated 
cytokine response.

Association of plasma cfDNA with cytokine profiles and labora-
tory markers. Our correlation analyses identified remarkable cor-
relations between cfDNA and cytokines (Figure 5A). The levels of 
innate immune cell–derived cfDNA (from neutrophils and mono-
cytes/macrophages) correlated significantly with myeloid-derived 
inflammatory cytokines (IL-6, IL-8, IL-16 MIP-1β) in patients with 
MIS-C. Innate immune cytokines also correlated with cfDNA 
derived from solid organs (Figure 5A). Given the different scales 
of cfDNA and cytokines, data were scaled and centered to gener-
ate z scores. Hierarchical clustering of Pearson’s correlation dis-
tances between samples/patients demonstrated good separation 
between pCOVID-19 and MIS-C patients (Figure 5B). PCA of com-
bined cfDNA and cytokine profiles also distinguished pathogenic 
contributors of MIS-C and pCOVID-19 (Figure 6A), and these dif-
ferences were mainly driven by myeloid cell–derived cf DNA and 

cytokines (Figure 6B). Inclusion of the cfDNA and cytokine profiles 
into a single random forest mode identified the top 24 important 
cfDNA and cytokine features (Figure 6C) discriminating MIS-C 
from pCOVID-19, with an AUC of 0.908 (Figure 6D).

We further examined the association between cfDNA lev-
els and conventional laboratory markers of inflammation and 
organ injury markers in MIS-C (Supplemental Figure 6A). 
Total and innate immune cell–derived cfDNA measured at the 
time of hospital admission showed a weak correlation with 
admission levels of CRP and D-dimer, but a strong positive 
correlation with markers of disease severity at peak levels of 
CRP and D-dimer (during the hospital stay, Supplemental Fig-
ure 6B). These findings suggest that cfDNA provides an early 
readout of impending systemic inflammation that manifests 
later via conventional biochemical markers, indicative of sys-
temic tissue damage. The degree of tissue damage correlat-
ed with biochemical measures of tissue injury. For example, 
hepatocyte-specific cfDNA correlated with liver function tests, 
including those for alanine aminotransferase (ALT) (r = 0.83, 
P = 0.001) and aspartate transaminase (AST) (r = 0.65, P = 
0.003). Two patients with the highest ALT and AST levels also 
demonstrated the highest hepatocyte-specific cfDNA (Sup-
plemental Table 4). CRP and D-dimer levels demonstrated 
modest performance in discriminating MIS-C and pCOVID-19 
(Supplemental Figure 6C). Using a random forest model (34, 
35), we also show that cfDNA measures alone demonstrated 
performance comparable to that of a model that included com-
bined CRP, D-dimers, and cfDNA measurements (Supplemen-
tal Figure 6, C and D). Our findings typify MIS-C as an innate 
immune–driven hyperinflammatory disease causing interindi-
vidual variable multiorgan and tissue injury.

Discussion
Our findings suggest that cfDNA is an early, sensitive, and non-
invasive marker of tissue injury, including that which is clinically 
occult (36) in MIS-C and pCOVID19, which signals impending 
pathology in various organs and tissues. Our use of cfDNA as a 
biomarker for end-organ tissue injury and multiplex plasma cyto-
kine analysis for mapping systemic inflammation infers patho-
genic correlates for MIS-C and pCOVID-19. Comprehensive 
genome-wide cfDNA methylome profiling revealed distinct and 
exaggerated tissue-specific cfDNA from multiple tissue types in 
MIS-C compared with pCOVID-19. High but interindividual vari-
able levels of tissue-specific cfDNA among patients with MIS-C 
confirmed the clinically apparent heterogeneity of this disease 
and its end-organ involvement. Combined with elevated levels of 
cfDNA from innate immune origin, cytokine analysis that showed 
elevated levels of myeloid-derived inflammatory cytokines such 
as IL-15, IL-16, IL-6, IL-8, TNF-α, MIP-1α, and MIP-1β in MIS-C 
implicates the innate immune system as a probable driver of 
MIS-C pathogenesis and suggests potential therapeutic targets.

Somewhat surprisingly, we did not observe a notable corre-
spondence between tissue injury (as measured by cfDNA) in the 
GI tract or vascular endothelium, 2 commonly affected tissues 
in patients with MIS-C (37). Literature reports indicate that GI 
manifestations are common in MIS-C, whereas only 2 of 14 of the 
patients with MIS-C in our study had high levels of GI-derived 
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Figure 5. Association of cfDNA levels with the 
cytokine profile. (A) Pearson’s correlation matrix of 
cfDNA features with cytokine/chemokine profiles in 
MIS-C. Pink text indicates innate immune cfDNA and 
cytokines with significant correlations. (B) Unsuper-
vised hierarchical clustering heatmap of combined 
cfDNA and cytokine data for MIS-C and pCOVID-19 
patients. Data were scaled and centered (z score) for 
plotting the heatmap using the ComplexHeatmap 
package (R, version 4.2.1) to normalize the different 
cfDNA and cytokine scales. Patients dendogram 
(rows for MIS-C are shown in red and for pCOVID-19 in 
orange) is based on hierarchical clustering (“average” 
method) of Pearson’s correlation distances between 
samples. The feature (column) dendrogram is based 
on hierarchical clustering (“complete” method) of 
Euclidean distances between samples/patients.
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Although our sample size was comparatively small, we consider 
it likely that, as with GI cell cfDNA, our DNA methylation library 
may be inadequate to reliably capture vascular injury in patients 
with MIS-C and may therefore under-report cfDNA levels of vascu-
lar endothelial damage that typically accompanies the thrombotic 
events commonly observed in both pCOVID-19 and MIS-C. Nota-
bly, our previously published cfDNA data in adult patients reliably 
captured clinical vascular injury and outcomes in adult COVID-19 
(9) and adult pulmonary arterial hypertension (3).

The correspondence of baseline levels of cfDNA (at the time 
of hospital admission) with peak (post-admission) levels of bio-
chemical markers of tissue injury (e.g., CRP and D-dimers) sug-

cfDNA. However, imaging studies suggest that gastroenteritis, 
the entity that would be captured by GI-derived cfDNA, may be 
a less common manifestation of either MIS-C or pCOVID-19 (38, 
39). Given the limitations of the pandemic work environment, we 
did not capture patient symptoms and could not correlate other GI 
manifestations with cfDNA levels. In addition, the cfDNA algo-
rithm we used may not reliably capture the totality of GI injury 
because of the many different cell types in this organ. The GI-spe-
cific DNA methylation signatures included in our library targets 
the epithelial cells of the GI tract. Injury to other subregions (e.g., 
subepithelial and smooth muscle) would be missed. Future exper-
iments aim to tease out these issues.

Figure 6. Integrated cfDNA and cytokine analysis distinguishes MIS-C from pCOVID-19. (A and B) PCA of cfDNA and cytokine profile to differentiate MIS-C 
from pCOVID-19. (A) Graph of each sample with PC1 (Dim 1) on the x axis and PC2 (Dim 2) on the y axis. The large shapes (red triangle for MIS-C and blue circle 
for pCOVID-19) represent the average or center of their respective groups, with the ellipses representing 95% CIs of where the true average may lie. The per-
centages on the axes indicate the amount of variability in the data explained by that axis. (B) Cos2 plot of the representation of each variable for each dimen-
sion of the PCA. The darker and larger the circle, the more that variable is represented by the dimension it is listed under. The color gradient on the right-hand side 
of the panel correlates color with the approximate cos2 value. Pink text indicates key innate immune cfDNA and cytokine features. (C) Rank of important cfDNA 
and cytokine features to distinguish patients with MIS-C from those with pCOVID-19 using the random forest model. (D) Performance of combined cfDNA and 
cytokine features to distinguish MIS-C from pCOVID-19. ROC curves for the 10 different runs and the dashed line represent the average curve.
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epigenetics analysis we used in this study enables early character-
ization of relevant tissue injury in multiple disease settings (3–6), 
including injury from remote tissue types (12). For comparison, 
in solid organ transplantation settings, plasma allograft–derived 
cfDNA levels detect rejection 2–4 months earlier than do histo-
pathological, echocardiographic, or clinical manifestations (4, 
50). Going forward, the analysis of cfDNA epigenetic landscapes 
across tissue types could inform biological pathways related to 
disease pathology (13). In adult COVID-19, we showed that plas-
ma cfDNA contributes to an oxidative environment in a concen-
tration- and time-dependent manner (9). The release of cfDNA 
from injured cells is associated with the formation of NETs, which 
have been shown to be elevated in COVID-19 and contribute to 
immunothrombosis and organ damage (51).

Our study has limitations. Our findings are limited by a small 
sample size due to the rarity of MIS-C, even at a major metropol-
itan children’s hospital. Second, as discussed above, our cfDNA 
methylation algorithm does not include all cell types of the human 
body, and our deconvolution analysis was restricted to the detec-
tion of major cell types of the tissue or organ of origin. Because of 
the pandemic work conditions, we were only able to collect patient 
blood samples at the time of hospital admission, limiting the ability 
to analyze time courses of plasma cfDNA and cytokine production. 
Although we identified a strong correlation between cfDNA and 
circulating cytokines, our analyses and small sample size preclude 
the identification of a directional mechanistic link. Future mech-
anistic studies elucidating causal relationships between cfDNA 
and inflammatory pathways may illuminate therapeutic strategies. 
Nonetheless, to our knowledge, this study is among the first to use 
cfDNA tissue profiling to infer disease pathogenesis. Our results 
also shed light on potential endotypes of MIS-C, offering mech-
anistic clues toward developing precision treatment not only for 
MIS-C, but also for multiorgan inflammatory conditions of child-
hood such as Kawasaki disease and others.

Methods
Study design and participants. Twenty-eight pediatric patients (≤18 
years of age) with COVID-19 infection confirmed by a PCR test for 
SARS-COV-2 admitted to Johns Hopkins Hospital (JHU) between 
March 2020 and March 2021 were included in this study; 14 met the 
criteria for MIS-C according to the CDC (52), and 14 were patients 
with acute pCOVID-19 with no evidence of MIS-C. Demographic, 
clinical, and laboratory data were extracted from the patients’ med-
ical charts. The primary goal of this study was to define tissue injury 
patterns using circulating cfDNA and to profile circulating cytokine 
levels in patients with MIS-C and acute pCOVID-19. The secondary 
objectives were to assess the correlation between tissue cfDNA pat-
terns with circulating cytokines and chemokines and conventional 
clinical markers. An overview of study participants and experimental 
workflow is shown in Figure 1A.

Sample collection. Peripheral blood samples were collected into 
EDTA vacutainer tubes at the time of hospital admission before infu-
sion of IVIG and biologics. Plasma samples were collected by centri-
fuging at 1,600g for 10 minutes at 4°C, aliquoted to 1 mL volume in 
Eppendorf tubes, and stored at –80°C until use. Plasma was thawed 
and then centrifuged at high speed (16,000g) for 10 minutes at 4°C to 
remove residual debris. Plasma was spiked with fragmented unmeth-

gest the value of cfDNA as an early marker of tissue injury and sys-
temic inflammation. This pathological pattern is consistent with 
our prior published findings in the clinical settings of heart or lung 
transplantation, wherein the levels of allograft-derived cfDNA rise 
well before detection by physical damage (biopsy), enabling a non-
invasive, sensitive predictor of acute rejection and its severity.

Hematopoietic cells and solid organs (heart, kidney, and liver) 
were the major contributors of the high cfDNA in both pCOVID-19 
and MIS-C. However, compared with patients with pCOVID-19, 
patients with MIS-C had higher levels of total and tissue- specific 
cfDNA from hematopoietic tissues and solid organs (heart and 
liver). In addition, MIS-C, but not pCOVID-19, showed higher 
levels of cfDNA from kidney and, surprisingly, from endocrine 
organs. These cfDNA tissue sources are consistent with reports of 
the myocardial injury, hepatitis, and acute kidney injury observed 
patients with MIS-C (37, 40, 41). Our findings are consistent with 
proteomics studies showing increased cardiac-specific antigens 
in MIS-C (42). Our analysis revealed substantially higher levels of 
cardiac-derived cfDNA in MIS-C compared with pCOVID-19.

Our findings are consistent with innate immunity as the pre-
dominant driver of the systemic inflammation observed in MIS-C 
as compared with pCOVID-19. Higher cfDNA from endocrine 
organs found in a fraction of patients with MIS-C is consistent 
with observations of thyroid and adrenal insufficiency in some 
patients with MIS-C (43, 44). In our study, patients with MIS-C 
also had increased levels of circulating cfDNA derived from mega-
karyocyte-erythroid precursor cells compared with patients with 
pCOVID-19. These cells were the third major contributor to total 
plasma cfDNA (45). Megakaryocytes are implicated in immuno-
thrombosis, a common complication in MIS-C (46). Single-cell 
RNA-Seq (Gene Expression Omnibus [GEO] GSE166489) (47) 
analysis showed that these same cell types upregulate programmed 
cell death pathway genes, apoptosis, necroptosis, and pyroptosis in 
patients with MIS-C compared with pHCs. The adaptive immune 
cell compartment revealed comparable T cell– and B cell–derived 
cfDNA in MIS-C and pCOVID-19 patients. Immunoregulatory 
cytokines (such as MDC) that promote an adaptive regulatory T 
cell response (48) were significantly lower in patients with MIS-C 
compared with patients with pCOVID-19 and pHCs. While MIS-C 
and pCOVID-19 patients had similar absolute counts of circulat-
ing neutrophils, we observed elevated cfDNA derived from innate 
immune cells, including neutrophils, monocytes/macrophages, 
and NK cells predominantly in patients with MIS-C compared 
with patients with pCOVID-19, in agreement with published work 
implicating neutrophils and monocytes/macrophages as central 
players in MIS-C pathogenesis (16, 49).

Because MIS-C is a serious acute syndrome that requires a 
prompt response, a fast, sensitive, and reliable biomarker of ear-
ly tissue injury is of great clinical value. Given the heterogeneous 
clinical presentation of MIS-C, a profile of end-organ involve-
ment in each patient, including occult tissue types, may guide 
an individualized treatment strategy. The integrated cfDNA 
and cytokine analysis we have described here has broad clinical 
and mechanistic implications. As noted, an accurate, noninva-
sive marker of early injury offers advantages over conventional 
inflammatory and organ injury markers that may appear later in 
the clinical course of pCOVID-19 and MIS-C. The cfDNA-based 
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Multiplex cytokine/chemokine measurement. Plasma samples from 
14 patients with MIS-C, 14 patients with pCOVID-19, and 35 pHCs 
were measured, in duplicate, for 36 different cytokines (IFN-γ, IFN-
α2a, IFN-β, IFN-λ1, IP-10, IL-10, IL-12p70, IL-13, IL-15, IL-16, IL-17A, 
IL-1α, IL-RA, IL-1β, IL-2, IL-2Rα, IL-23p40, IL-4, IL5, IL-6, IL-7, TNF-α, 
TGF-β GM-CSF and VEGF) and chemokines (IL-8, MIP-1α, MIP-1β, 
MCP-1, MCP-2, MCP-4, eotaxin, eotaxin 3, MDC, TARC) using the 
multiplex assay kit from Meso Scale Discovery (MSD) according to the 
manufacturer’s instructions. Data were acquired with a MESO Quick-
Plex SQ 120 instrument, and if the cytokine values were below the 
background, the values were set to 0.

Collection and analysis of cell death gene transcripts. Publicly avail-
able single-cell RNA-Seq data from peripheral blood cells of patients 
with MIS-C and pHCs were downloaded from the NCBI’s GEO data-
base (GEO GSE166489). We used the processed data and the annota-
tion provided in ref. 47 to obtain the gene expression of myeloid cells, 
neutrophils, B cells, T cells, and NK cells. The counts for each gene were 
aggregated within each cell type across the cells to form a pseudobulk 
sample for each cell type from each patient. Then, pseudobulk counts 
were normalized using the NormalizeData function in the Seurat R pack-
age (57). To remove the batch effect, the sva function in the sva R package 
(58) was used to estimate and remove the effect of surrogate variables 
from the pseudobulk samples. Gene expression of the cell death–related 
genes was obtained from the pseudobulk sample of each cell type from  
each patient. To compare gene expression between patients with MIS-C 
and pHCs, a 2-sided t test was applied to each gene within each cell type. 
P values were transformed to the FDR to adjust for multiple testing using 
the Benjamini-Hochberg procedure (59).

Statistics. Data are presented as frequencies (proportions) for cate-
gorical variables and as the median (IQR) continuous variables. Fisher’s 
exact or χ2 test was used to compare categorical variables between groups. 
Comparisons between 3 groups of continuous variables were conducted 
using a Kruskal-Wallis test with Dunn’s correction for multiple compar-
isons. A Mann-Whitney U test was used for comparison of 2 continuous 
group variables unless otherwise stated. ROC curve analysis was per-
formed to determine the discriminating performance of cfDNA and the 
cytokine profile in children with or without MIS-C. The random forest 
model was applied to evaluate the discriminative performance of com-
bined cfDNA and cytokine features using the leave-one-out cross-valida-
tion approach. The training and testing process was repeated 10 times for 
the data, which was log2(× + 1) transformed. The AUC ROC is the average 
value of the 10 different runs. The relative importance for each the cfDNA 
and cytokine features was assessed using the mean increase in error rate 
(decrease in accuracy) over all out-of-bag cross-validated predictions. 
Pearson’s correlation coefficient was used to examine the correlations 
between cfDNA levels with cytokine profiles and clinical characteristics. 
PCA was carried out using the R packages FactoMineR and factoextra to 
estimate the relative contribution of cfDNA and cytokine data for sepa-
ration between groups. Unsupervised hierarchical clustering analysis was 
performed to create a heatmap using ComplexHeatmap R package. A P 
value less than 0.05 was considered statistically significant. GraphPad 
Prism (version 9.4.1) and R (version 4.2.1) software was used for statistical 
analysis and generation of graphs.

Study approval. This study was approved by the IRBs of the Johns 
Hopkins University. For an additional comparison, we included plas-
ma samples obtained in the morning at outpatient visits from 35 pHCs 
under a protocol (NCT02179151) approved by the NIH Clinical Cen-

ylated lambda DNA (725 copies/mL) to calculate extraction efficiency 
and the bisulfite conversion rate. Then, plasma cfDNA was isolated 
on an automated nucleic acid sample preparation QIAsymphonySP 
(QIAGEN) instrument using the QIAsymphony DSP Circulating DNA 
kit according to the manufacturer’s protocol. The extracted cfDNA 
was eluted in 60 μL in LoTE buffer, quality checked using the Cell-
free DNA ScreenTape assay on the 4150 TapeStation System (Agilent 
Technologies), and stored at –20°C for further use.

cfDNA quantification. The absolute copy number of cell-free 
nuclear and mitochondrial DNA was measured as described earlier 
using a droplet digital PCR (ddPCR) system (53). Briefly, a total of 22 
μL reaction mix was prepared, in triplicate, by adding 11 μL 2× ddPCR 
Supermix for Probes (no deoxyuridine triphosphate [dUTPs]), 0.50 μL 
20× FAM-labeled ddPCR assay, 0.50 μL HEX-labeled ddPCR assay, 6 
μL nuclease-free water, and 4 μL template cfDNA (diluted 1:10). The 
PCR reaction was thoroughly mixed, and droplets were generated 
using the QX200 Droplet Generator, followed by thermal cycling (1 
cycle at 95°C for 10 min, 40 cycles [ramp rate 2.5°C/s] at 94°C for 30 
s, 60°C for 1 min, and then 98°C for 10 min). Four different primers/
probes (AP3B1, TERT, AGO1, and RPP30) for n-cfDNA, 1 (ND1) for 
mt-cfDNA and 1 for lambda were used (Bio-Rad). Samples were read 
with QX200 Droplet Reader with QuantaSoft Software and analyzed 
using QuantaSoft Analysis Pro software. The extraction efficiency of 
cfDNA was calculated by dividing the absolute copy number of lamb-
da DNA recovered by the expected plasma spiked-in lambda DNA 
value. The levels of n-cfDNA (average of 4 targets) and mt-cfDNA in 
plasma were expressed as copies per milliliter plasma sample (cp/mL 
plasma) after adjusting for the dilution factor, plasma volume used, 
and extraction efficiency.

cfDNA library preparation and sequencing analysis. The extracted cfD-
NA underwent bisulfite treatment (EZ DNA Methylation-Gold Kit, Zymo 
Research) according to the manufacturer’s recommendations. Sequencing 
libraries were constructed using the Accel-NGS Methyl-Seq DNA Library 
Kit with Unique Dual Indexing (Swift Biosciences) for whole-genome 
bisulfite sequencing according to the manufacturer’s instructions. Librar-
ies were quality checked with high-sensitivity D1000 ScreenTape (Agilent 
Technologies), quantified with the Quant-iT PicoGreen dsDNA assay 
kit (Life Technologies, Thermo Fisher Scientific), pooled with an equi-
molar concentration on an epMotion 5070 instrument, and sequenced 
on an Illumina NovaSeq 6000 machine using 2 × 100 bp reads. The raw 
sequencing reads were quality checked with FastQC (54), version 0.11.9, 
trimmed while retaining paired-end reads with a minimum length of 50 
bp using TrimGalore (55), version 0.6.7, and mapped to the bisulfite-con-
verted human reference genome (version hg19) with Bismark (56), ver-
sion 0.23.0, using Bowtie2, version 2.4.5, as the default aligner. Bismark 
was also used to remove PCR duplicates and extract cytosine methylation 
(CpG) states in all individual samples. The average mapping efficiency, 
deduplication rate, base coverage, and sequencing depth were 88.7% ± 
0.8%, 89.53% ± 4.21%, 5% ± 0.76%, and 5.63% ± 0.84%, respectively. 
The efficiency of bisulfite conversion was determined using the spiked-
in lambda DNA and resulted in an average conversion rate of 99.95% 
± 0.004%. The cell or tissue origin of cfDNA was deconvoluted using 
human cell or tissue-type–specific methylation signatures as a reference 
with meth_atlas algorithm (12). To obtain absolute concentrations, the esti-
mated proportions of cell- or tissue-specific cfDNA were multiplied by the 
total concentration of nucleus-derived cfDNA (copies/mL) in plasma. The 
deconvolution plots were generated using R software, version 4.2.2.

https://doi.org/10.1172/JCI171729


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2023;133(21):e171729  https://doi.org/10.1172/JCI1717291 2

 1. Feldstein LR, et al. Multisystem inflammatory 
syndrome in U.S. Children and adolescents. N 
Engl J Med. 2020;383(4):334–346.

 2. Godfred-Cato S, et al. COVID-19-associated 
multisystem inflammatory syndrome in children 
- United States, March-July 2020. MMWR Morb 
Mortal Wkly Rep. 2020;69(32):1074–1080.

 3. Brusca SB, et al. Plasma cell-free DNA predicts 
survival and maps specific sources of injury in 
pulmonary arterial hypertension. Circulation. 
2022;146(14):1033–1045.

 4. Agbor-Enoh S, et al. Cell-free DNA to detect 
heart allograft acute rejection. Circulation. 
2021;143(12):1184–1197.

 5. Bettegowda C, et al. Detection of circulating 
tumor DNA in early- and late-stage human malig-
nancies. Sci Transl Med. 2014;6(224):224ra24.

 6. Gögenur M, et al. The role of total cell-free DNA 
in predicting outcomes among trauma patients in 
the intensive care unit: a systematic review. Crit 
Care. 2017;21(1):14.

 7. Lo YM, et al. Rapid clearance of fetal DNA 
from maternal plasma. Am J Hum Genet. 
1999;64(1):218–224.

 8. Cheng AP, et al. Cell-free DNA tissues of origin 
by methylation profiling reveals significant 
cell, tissue, and organ-specific injury related to 
COVID-19 severity. Med. 2021;2(4):411–422.

 9. Andargie TE, et al. Cell-free DNA maps COVID-
19 tissue injury and risk of death and can cause 
tissue injury. JCI Insight. 2021;6(7):e147610.

 10. Scozzi D, et al. Circulating mitochondrial DNA is 
an early indicator of severe illness and mortality 
from COVID-19. JCI Insight. 2021;6(4):e143299.

 11. Al Amir Dache Z, et al. Blood contains circulating 
cell-free respiratory competent mitochondria. 
FASEB J. 2020;34(3):3616–3630.

 12. Moss J, et al. Comprehensive human cell-type 
methylation atlas reveals origins of circulating 
cell-free DNA in health and disease. Nat Com-
mun. 2018;9(1):1–12.

 13. Siejka-Zielińska P, et al. Cell-free DNA TAPS pro-
vides multimodal information for early cancer 
detection. Sci Adv. 2021;7(36):eabh0534.

 14. Caggiano C, et al. Comprehensive cell type 
decomposition of circulating cell-free DNA with 
CelFiE. Nat Commun. 2021;12(1):2717.

 15. Gruber CN, et al. Mapping systemic inflamma-
tion and antibody responses in multisystem 
inflammatory syndrome in children (MIS-C). 
Cell. 2020;183(4):982–995.

 16. Sacco K, et al. Immunopathological signatures 
in multisystem inflammatory syndrome in 
children and pediatric COVID-19. Nat Med. 
2022;28(5):1050–1062.

 17. Vella LA, et al. Deep immune profiling of MIS-C 
demonstrates marked but transient immune 
activation compared with adult and pediatric 
COVID-19. Sci Immunol. 2021;6(57):eabf7570.

 18. Consiglio CR, et al. The immunology of multi-
system inflammatory syndrome in children with 
COVID-19. Cell. 2020;183(4):968–981.

 19. Peart Akindele N, et al. Distinct cytokine and 
chemokine dysregulation in hospitalized chil-
dren with acute Coronavirus disease 2019 and 
multisystem inflammatory syndrome with sim-
ilar levels of nasopharyngeal severe acute respi-
ratory syndrome Coronavirus 2 shedding. J Infect 
Dis. 2021;224(4):606–615.

 20. Carter MJ, et al. Peripheral immunophenotypes 
in children with multisystem inflammatory syn-
drome associated with SARS-CoV-2 infection. 
Nat Med. 2020;26(11):1701–1707.

 21. Weisberg SP, et al. Distinct antibody responses 
to SARS-CoV-2 in children and adults across 
the COVID-19 clinical spectrum. Nat Immunol. 
2021;22(1):25–31.

 22. Yamazoe M, et al. Sparsely methylated mitochondri-
al cell free DNA released from cardiomyocytes con-
tributes to systemic inflammatory response accom-
panied by atrial fibrillation. Sci Rep. 2021;11(1):5837.

 23. Nishimoto S, et al. Obesity-induced DNA 
released from adipocytes stimulates chronic adi-
pose tissue inflammation and insulin resistance. 
Sci Adv. 2016;2(3):e1501332.

 24. Dawulieti J, et al. Treatment of severe sepsis with 
nanoparticulate cell-free DNA scavengers. Sci 
Adv. 2020;6(22):eaay7148.

 25. Lam LKM, et al. DNA binding to TLR9 
expressed by red blood cells promotes innate 
immune activation and anemia. Sci Transl Med. 
2021;13(616):eabj1008.

 26. Wu B, et al. The impact of circulating mitochon-
drial DNA on cardiomyocyte apoptosis and 
myocardial injury after TLR4 activation in exper-
imental autoimmune myocarditis. Cell Physiol 
Biochem. 2017;42(2):713–728.

 27. Murata H, et al. Cell-free DNA derived from 
neutrophils triggers type 1 interferon signature in 
neuromyelitis optica spectrum disorder. Neurol 
Neuroimmunol Neuroinflamm. 2022;9(3):e1149.

 28. Gould TJ, et al. Cell-free DNA modulates clot 
structure and impairs fibrinolysis in sepsis. Arte-
rioscler Thromb Vasc Biol. 2015;35(12):2544–2553.

 29. Huckriede J, et al. Evolution of NETosis markers 
and DAMPs have prognostic value in critically ill 
COVID-19 patients. Sci Rep. 2021;11(1):15701.

 30. Ouwendijk WJD, et al. High levels of neutrophil 
extracellular traps persist in the lower respiratory 
tract of critically ill patients with Coronavirus 
disease 2019. J Infect Dis. 2021;223(9):1512–1521.

 31. Zuo Y, et al. Neutrophil extracellular traps and 
thrombosis in COVID-19. J Thromb Thrombolysis. 
2021;51(2):446–453.

 32. Spector BL, et al. The methylome and cell-free 
DNA: current applications in medicine and pedi-
atric disease. Pediatr Res. 2023;94(1):89–95.

 33. van der Meer AJ, et al. Systemic inflammation 
induces release of cell-free DNA from hema-
topoietic and parenchymal cells in mice and 
humans. Blood Adv. 2019;3(5):724–728.

 34. caret: Classification and Regression Training. Version 
6.0-94. Kuhn M, et al; 2023. https://cran.r-project.
org/web/packages/caret/index.html.

 35. Liaw A, Wiener M. Classification and regression 
by randomForest. R News. 2002;2(3):18–22.

 36. Elvan-Tüz A, et al. Are thyroid functions affect-
ed in multisystem inflammatory syndrome 
in children? J Clin Res Pediatr Endocrinol. 
2022;14(4):402–408.

 37. Feldstein LR, et al. Characteristics and outcomes 
of US children and adolescents with multisystem 

participants and sample collection. HK performed statistical anal-
yses. CML helped supervise the project. SAE supervised the study. 
All authors participated in the preparation of the manuscript and 
gave final approval for publication.

Acknowledgments
This research was supported by intramural research funds from the 
National Heart, Lung, and Blood Institute (NHLBI), NIH and the 
Lasker Clinical Research Fellowship Program. AHK received sup-
port from the NIAID, NIH (K08AI156021). We thank the dedicated 
clinical coordinators at JHU for recruiting and monitoring the study 
participants and providing blood samples. We thank Alison F. Davis 
(GRAfT, Bethesda, Maryland, USA) for editorial contributions.

Address correspondence to: Sean Agbor-Enoh, Lasker Clinical 
Research Tenure Track Investigator, Laboratory of Applied Pre-
cision Omics, GRAfT, Division of Intramural Research, National 
Heart, Lung, and Blood Institute, 10 Center Dr., Rm. 7D05, Bethes-
da, Maryland 20892, USA. Email: sean.agbor-enoh@nih.gov.

ter IRB. Written informed assent and consent was obtained from all 
participants or their legal guardians and conducted according to the 
Declaration of Helsinki.

Data availability. The data set used in this manuscript is available 
in the supplemental material in a single Excel (XLS) file named Sup-
plemental Supporting Data Values. All the values for all data points 
shown in the graphs are displayed in a separate tab. The whole-ge-
nome bisulfite sequencing data are not publicly deposited because 
of privacy/ethics restrictions and are available from the correspond-
ing author upon reasonable request. For code used in this study, the 
methylation analysis scripts are provided on Zenodo (https://doi.
org/10.5281/zenodo.8387344).

Author contributions
TEA and SAE conceived and designed the experiments. TEA, KR, 
HK, WP, RM, TSJ, and MKJ performed experiments. TEA wrote 
the manuscript draft. NR, TH, ZA, WZ, and YW conducted bioin-
formatics analysis. TEA, KR, WZ, and AHK performed statistical 
analyses. OG, SB, JAY, and ALC were involved in recruiting study 

https://doi.org/10.1172/JCI171729
https://doi.org/10.1056/NEJMoa2021680
https://doi.org/10.1056/NEJMoa2021680
https://doi.org/10.1056/NEJMoa2021680
https://doi.org/10.15585/mmwr.mm6932e2
https://doi.org/10.15585/mmwr.mm6932e2
https://doi.org/10.15585/mmwr.mm6932e2
https://doi.org/10.15585/mmwr.mm6932e2
https://doi.org/10.1161/CIRCULATIONAHA.121.056719
https://doi.org/10.1161/CIRCULATIONAHA.121.056719
https://doi.org/10.1161/CIRCULATIONAHA.121.056719
https://doi.org/10.1161/CIRCULATIONAHA.121.056719
https://doi.org/10.1161/CIRCULATIONAHA.120.049098
https://doi.org/10.1161/CIRCULATIONAHA.120.049098
https://doi.org/10.1161/CIRCULATIONAHA.120.049098
https://doi.org/10.1126/scitranslmed.3007094
https://doi.org/10.1126/scitranslmed.3007094
https://doi.org/10.1126/scitranslmed.3007094
https://doi.org/10.1186/s13054-016-1578-9
https://doi.org/10.1186/s13054-016-1578-9
https://doi.org/10.1186/s13054-016-1578-9
https://doi.org/10.1186/s13054-016-1578-9
https://doi.org/10.1086/302205
https://doi.org/10.1086/302205
https://doi.org/10.1086/302205
https://doi.org/10.1016/j.medj.2021.01.001
https://doi.org/10.1016/j.medj.2021.01.001
https://doi.org/10.1016/j.medj.2021.01.001
https://doi.org/10.1016/j.medj.2021.01.001
https://doi.org/10.1172/jci.insight.147610
https://doi.org/10.1172/jci.insight.147610
https://doi.org/10.1172/jci.insight.147610
https://doi.org/10.1096/fj.201901917RR
https://doi.org/10.1096/fj.201901917RR
https://doi.org/10.1096/fj.201901917RR
https://doi.org/10.1038/s41467-018-07466-6
https://doi.org/10.1038/s41467-018-07466-6
https://doi.org/10.1038/s41467-018-07466-6
https://doi.org/10.1038/s41467-018-07466-6
https://doi.org/10.1126/sciadv.abh0534
https://doi.org/10.1126/sciadv.abh0534
https://doi.org/10.1126/sciadv.abh0534
https://doi.org/10.1038/s41467-021-22901-x
https://doi.org/10.1038/s41467-021-22901-x
https://doi.org/10.1038/s41467-021-22901-x
https://doi.org/10.1016/j.cell.2020.09.034
https://doi.org/10.1016/j.cell.2020.09.034
https://doi.org/10.1016/j.cell.2020.09.034
https://doi.org/10.1016/j.cell.2020.09.034
https://doi.org/10.1038/s41591-022-01724-3
https://doi.org/10.1038/s41591-022-01724-3
https://doi.org/10.1038/s41591-022-01724-3
https://doi.org/10.1038/s41591-022-01724-3
https://doi.org/10.1126/sciimmunol.abf7570
https://doi.org/10.1126/sciimmunol.abf7570
https://doi.org/10.1126/sciimmunol.abf7570
https://doi.org/10.1126/sciimmunol.abf7570
https://doi.org/10.1016/j.cell.2020.09.016
https://doi.org/10.1016/j.cell.2020.09.016
https://doi.org/10.1016/j.cell.2020.09.016
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1093/infdis/jiab285
https://doi.org/10.1038/s41591-020-1054-6
https://doi.org/10.1038/s41591-020-1054-6
https://doi.org/10.1038/s41591-020-1054-6
https://doi.org/10.1038/s41591-020-1054-6
https://doi.org/10.1038/s41590-020-00826-9
https://doi.org/10.1038/s41590-020-00826-9
https://doi.org/10.1038/s41590-020-00826-9
https://doi.org/10.1038/s41590-020-00826-9
https://doi.org/10.1038/s41598-021-85204-7
https://doi.org/10.1038/s41598-021-85204-7
https://doi.org/10.1038/s41598-021-85204-7
https://doi.org/10.1038/s41598-021-85204-7
https://doi.org/10.1126/sciadv.1501332
https://doi.org/10.1126/sciadv.1501332
https://doi.org/10.1126/sciadv.1501332
https://doi.org/10.1126/sciadv.1501332
https://doi.org/10.1126/sciadv.aay7148
https://doi.org/10.1126/sciadv.aay7148
https://doi.org/10.1126/sciadv.aay7148
https://doi.org/10.1126/scitranslmed.abj1008
https://doi.org/10.1126/scitranslmed.abj1008
https://doi.org/10.1126/scitranslmed.abj1008
https://doi.org/10.1126/scitranslmed.abj1008
https://doi.org/10.1159/000477889
https://doi.org/10.1159/000477889
https://doi.org/10.1159/000477889
https://doi.org/10.1159/000477889
https://doi.org/10.1159/000477889
https://doi.org/10.1212/NXI.0000000000001149
https://doi.org/10.1212/NXI.0000000000001149
https://doi.org/10.1212/NXI.0000000000001149
https://doi.org/10.1212/NXI.0000000000001149
https://doi.org/10.1161/ATVBAHA.115.306035
https://doi.org/10.1161/ATVBAHA.115.306035
https://doi.org/10.1161/ATVBAHA.115.306035
https://doi.org/10.1038/s41598-021-95209-x
https://doi.org/10.1038/s41598-021-95209-x
https://doi.org/10.1038/s41598-021-95209-x
https://doi.org/10.1093/infdis/jiab050
https://doi.org/10.1093/infdis/jiab050
https://doi.org/10.1093/infdis/jiab050
https://doi.org/10.1093/infdis/jiab050
https://doi.org/10.1007/s11239-020-02324-z
https://doi.org/10.1007/s11239-020-02324-z
https://doi.org/10.1007/s11239-020-02324-z
https://doi.org/10.1038/s41390-022-02448-3
https://doi.org/10.1038/s41390-022-02448-3
https://doi.org/10.1038/s41390-022-02448-3
https://doi.org/10.1182/bloodadvances.2018018895
https://doi.org/10.1182/bloodadvances.2018018895
https://doi.org/10.1182/bloodadvances.2018018895
https://doi.org/10.1182/bloodadvances.2018018895
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://doi.org/10.4274/jcrpe.galenos.2022.2022-4-7
https://doi.org/10.4274/jcrpe.galenos.2022.2022-4-7
https://doi.org/10.4274/jcrpe.galenos.2022.2022-4-7
https://doi.org/10.4274/jcrpe.galenos.2022.2022-4-7
https://doi.org/10.1001/jama.2021.2091
https://doi.org/10.1001/jama.2021.2091
mailto://sean.agbor-enoh@nih.gov
https://www.jci.org/articles/view/171729#sd
https://doi.org/10.5281/zenodo.8387344


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

1 3J Clin Invest. 2023;133(21):e171729  https://doi.org/10.1172/JCI171729

inflammatory syndrome in children (MIS-C) 
compared with severe acute COVID-19. JAMA. 
2021;325(11):1074–1087.

 38. Miller J, et al. Gastrointestinal symptoms as a 
major presentation component of a novel multi-
system inflammatory syndrome in children that 
is related to Coronavirus disease 2019: a single 
center experience of 44 cases. Gastroenterology. 
2020;159(4):1571–1574.

 39. Sahn B, et al. Features of intestinal disease associ-
ated with COVID-related multisystem inflamma-
tory syndrome in children. J Pediatr Gastroenterol 
Nutr. 2021;72(3):384–387.

 40. Tripathi AK, et al. Acute kidney injury following 
multisystem inflammatory syndrome associated 
with SARS-CoV-2 infection in children: a system-
atic review and meta-analysis. Pediatr Nephrol. 
2023;38(2):357–370.

 41. Cantor A, et al. Acute hepatitis is a prominent 
presentation of the multisystem inflammatory 
syndrome in children: a single-center report. 
Hepatology. 2020;72(5):1522–1527.

 42. Porritt RA, et al. The autoimmune signature 
of hyperinflammatory multisystem inflam-
matory syndrome in children. J Clin Invest. 
2021;131(20):e151520.

 43. Calcaterra V, et al. Non-thyroidal illness syn-
drome and SARS-CoV-2-associated multisystem 
inflammatory syndrome in children. J Endocrinol 
Invest. 2022;45(1):199–208.

 44. Flokas ME, et al. New-onset primary adrenal 

insufficiency and autoimmune hypothyroidism 
in a pediatric patient presenting with MIS-C. 
Horm Res Paediatr. 2022;95(4):397–401.

 45. Sadeh R, et al. ChIP-seq of plasma cell-free 
nucleosomes identifies gene expression pro-
grams of the cells of origin. Nat Biotechnol. 
2021;39(5):586–598.

 46. Menon NM, Srivaths LV. Thromboembolism 
in children with multisystem inflammatory 
syndrome: a literature review. Pediatr Res. 
2022;92(4):946–950.

 47. Ramaswamy A, et al. Immune dysregulation 
and autoreactivity correlate with disease sever-
ity in SARS-CoV-2-associated multisystem 
inflammatory syndrome in children. Immunity. 
2021;54(5):1083–1095.

 48. Rapp M, et al. CCL22 controls immunity by 
promoting regulatory T cell communication 
with dendritic cells in lymph nodes. J Exp Med. 
2019;216(5):1170–1181.

 49. Boribong BP, et al. Neutrophil profiles of 
pediatric COVID-19 and multisystem inflam-
matory syndrome in children. Cell Rep Med. 
2022;3(12):100848.

 50. Agbor-Enoh S, et al. Late manifestation of alloan-
tibody-associated injury and clinical pulmonary 
antibody-mediated rejection: Evidence from 
cell-free DNA analysis. J Heart Lung Transplant. 
2018;37(7):925–932.

 51. Zuo Y, et al. Neutrophil extracellular traps and 
thrombosis in COVID-19. J Thromb Thrombolysis. 

2021;51(2):446–453.
 52. CDC. Information For Healthcare Providers 

About Multisystem Inflammatory Syndrome In 
Children (MIS-C). https://www.cdc.gov/mis/
mis-c/hcp/index.html. Updated January 3, 2023. 
Accessed September 7, 2023.

 53. Andargie T, et al. Integrated cell-free DNA and 
cytokine analysis uncovers distinct tissue injury 
and immune response patterns in solid organ 
transplant recipients with COVID-19 [preprint]. 
https://doi.org/10.21203/rs.3.rs-1262270/v1. 
Posted on Res Sq January 20, 2022.

 54. Brown J, et al. FQC Dashboard: integrates 
FastQC results into a web-based, interactive, and 
extensible FASTQ quality control tool. Bioinfor-
matics. 2017;33(19):3137–3139.

 55. Martin M. Cutadapt removes adapter sequences 
from high-throughput sequencing reads. EMBnet J. 
2011;17(1):10–12.

 56. Krueger F, and Andrews SR. Bismark: a flexible 
aligner and methylation caller for Bisulfite-Seq 
applications. Bioinformatics. 2011;27(11):1571–1572.

 57. Hao Y, et al. Integrated analysis of multimodal 
single-cell data. Cell. 2021;184(13):3573–3587.

 58. sva: Surrogate Variable Analysis. Version 3.10. 
Leek JT, et al; 2023. https://doi.org/doi:10.18129/
B9.bioc.sva.

 59. Benjamini Y, Hochberg Y. Controlling the false 
discovery rate: a practical and powerful approach 
to multiple testing. J R Stat Soc B Stat Methodol. 
1995;57(1):289–300.

https://doi.org/10.1172/JCI171729
https://doi.org/10.1001/jama.2021.2091
https://doi.org/10.1001/jama.2021.2091
https://doi.org/10.1001/jama.2021.2091
https://doi.org/10.1053/j.gastro.2020.05.079
https://doi.org/10.1053/j.gastro.2020.05.079
https://doi.org/10.1053/j.gastro.2020.05.079
https://doi.org/10.1053/j.gastro.2020.05.079
https://doi.org/10.1053/j.gastro.2020.05.079
https://doi.org/10.1053/j.gastro.2020.05.079
https://doi.org/10.1097/MPG.0000000000002953
https://doi.org/10.1097/MPG.0000000000002953
https://doi.org/10.1097/MPG.0000000000002953
https://doi.org/10.1097/MPG.0000000000002953
https://doi.org/10.1007/s00467-022-05701-3
https://doi.org/10.1007/s00467-022-05701-3
https://doi.org/10.1007/s00467-022-05701-3
https://doi.org/10.1007/s00467-022-05701-3
https://doi.org/10.1007/s00467-022-05701-3
https://doi.org/10.1002/hep.31526
https://doi.org/10.1002/hep.31526
https://doi.org/10.1002/hep.31526
https://doi.org/10.1002/hep.31526
https://doi.org/10.1172/JCI151520
https://doi.org/10.1172/JCI151520
https://doi.org/10.1172/JCI151520
https://doi.org/10.1172/JCI151520
https://doi.org/10.1007/s40618-021-01647-9
https://doi.org/10.1007/s40618-021-01647-9
https://doi.org/10.1007/s40618-021-01647-9
https://doi.org/10.1007/s40618-021-01647-9
https://doi.org/10.1159/000525227
https://doi.org/10.1159/000525227
https://doi.org/10.1159/000525227
https://doi.org/10.1159/000525227
https://doi.org/10.1038/s41587-020-00775-6
https://doi.org/10.1038/s41587-020-00775-6
https://doi.org/10.1038/s41587-020-00775-6
https://doi.org/10.1038/s41587-020-00775-6
https://doi.org/10.1038/s41390-021-01873-0
https://doi.org/10.1038/s41390-021-01873-0
https://doi.org/10.1038/s41390-021-01873-0
https://doi.org/10.1038/s41390-021-01873-0
https://doi.org/10.1016/j.immuni.2021.04.003
https://doi.org/10.1016/j.immuni.2021.04.003
https://doi.org/10.1016/j.immuni.2021.04.003
https://doi.org/10.1016/j.immuni.2021.04.003
https://doi.org/10.1016/j.immuni.2021.04.003
https://doi.org/10.1084/jem.20170277
https://doi.org/10.1084/jem.20170277
https://doi.org/10.1084/jem.20170277
https://doi.org/10.1084/jem.20170277
https://doi.org/10.1016/j.xcrm.2022.100848
https://doi.org/10.1016/j.xcrm.2022.100848
https://doi.org/10.1016/j.xcrm.2022.100848
https://doi.org/10.1016/j.xcrm.2022.100848
https://doi.org/10.1016/j.healun.2018.01.1305
https://doi.org/10.1016/j.healun.2018.01.1305
https://doi.org/10.1016/j.healun.2018.01.1305
https://doi.org/10.1016/j.healun.2018.01.1305
https://doi.org/10.1016/j.healun.2018.01.1305
https://doi.org/10.1007/s11239-020-02324-z
https://doi.org/10.1007/s11239-020-02324-z
https://doi.org/10.1007/s11239-020-02324-z
https://www.cdc.gov/mis/mis-c/hcp/index.html
https://www.cdc.gov/mis/mis-c/hcp/index.html
https://doi.org/10.21203/rs.3.rs-1262270/v1
https://doi.org/10.1093/bioinformatics/btx373
https://doi.org/10.1093/bioinformatics/btx373
https://doi.org/10.1093/bioinformatics/btx373
https://doi.org/10.1093/bioinformatics/btx373
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/doi:10.18129/B9.bioc.sva
https://doi.org/doi:10.18129/B9.bioc.sva

	Graphical abstract

