Supplemental Material

Anti-miR-93-5p therapy prolongs sepsis survival by restoring the peripheral immune response

Supplemental Methods Page 2Supplemental FiguresPage 16Supplementary Figure 1 Page 16
Supplementary Figure 2 Page 17
Supplementary Figure 3 Page 19
Supplementary Figure 4 Page 21
Supplementary Figure 5 Page 23
Supplementary Figure 6 Page 24
Supplementary Figure 7 Page 26
Supplementary Figure 8 Page 27
Supplementary Figure 9 Page 28
Supplementary Figure 10 Page 30
Supplementary Figure 11 Page 32
Supplementary Figure 12 Page 34
Supplementary Figure 13 Page 35
Supplementary Figure 14 Page 38
Supplementary Figure 15 Page 39
Supplementary Figure 16 Page 40
Supplementary Figure 17 Page 42
Supplemental Tables
Supplementary Table 1 Page 44
Supplementary Table 2 Page 45
Supplementary Table 3 Page 47
Supplementary Table 4 Page 67
Supplementary Table 5 Page 69
Supplementary Table 6 Page 70
References Page 72

Supplemental Methods

Cecal ligation and puncture-induced murine sepsis model

Male and female C57BL/6 mice of different ages were purchased from The Jackson Laboratory. One day before surgery, the lower abdomen of all mice was shaved with an electric trimmer. Before surgery, mice were anesthetized using an inhalational anesthetic (isoflurane). After anesthesia, the abdomen of the mice was disinfected with alcohol prep pads.

Next, an approximately 1.5 cm-long skin midline incision was made with a surgical scissor without entering the peritoneal cavity. After this initial incision, a small scissor was used to extend the incision and enter the peritoneal cavity. Afterward, by using anatomical forceps, the intestines were mobilized until the cecum was localized and exteriorized. We performed a large ligation of the cecum (high-grade sepsis), close to the ileocecal valve (75% of the cecum were under the ligation), therefore we were expecting a 100% lethality of untreated mice within maximum 4 days after CLP (1). The cecum was perforated by a single, through-and-through puncture between the tip of the cecum and the ligation. After removing the needle, feces were extruded and the cecum was placed back in the peritoneal cavity. Two to three sutures were applied in order to close the peritoneum, fasciae, and abdominal muscles, and the skin was closed using metallic clips. In order to avoid wound infection, antibiotic ointment was applied over the closed incision. Additionally, after the procedure, mice received $100 \mu \mathrm{l}$ of sterile PBS via intraperitoneal injection for hydration. Postoperative analgesia was given to all mice. All mice with sepsis that survived were euthanized 72 hours after the induction of sepsis. As controls, we used shamoperated mice, who underwent the same procedure only without ligation and puncturing of the cecum.

KSHV-miR-K12-12*-induced inflammation model

Male and female C57BL/6 mice were purchased from The Jackson Laboratory. Eight-week-old mice were injected intraperitoneally with $200 \mu \mathrm{~g} / \mathrm{kg}$ of miR-K12-12* mimic or the same dose of scramble miRNA. The oligonucleotides were incorporated into neutral 1,2-dioleoyl-sn-glycero-3phosphatidylcholine (DOPC) nanoliposomes. Briefly, DOPC and miRNA (miR-K12-12* mimic or scramble miRNA) were mixed in the presence of excess tertiary butanol at a ratio of $1: 10(\mathrm{w} / \mathrm{w})$ miRNA/DOPC. Tween-20 was added to the mixture in a ratio of $1: 19$ Tween-20:miRNA/DOPC. The
mixture was vortexed, frozen in an acetone/dry ice bath, and lyophilized. Before in vivo administration, this preparation was hydrated with PBS at a concentration of $200 \mu \mathrm{~g} / \mathrm{kg}$ to achieve the desired dose in $100 \mu \mathrm{~L}$ per injection. Twenty-four hours after intraperitoneal miRNA injection, the mice were euthanized by terminal intracardiac blood draw under anesthesia.

In vivo treatment with anti-miR-93-5p

Male and female C57BL/6 mice were purchased from The Jackson Laboratory. We used mice of three different age groups for the survival experiments: 4.5 -month-old (adult mice), 8 -month-old (middle age/mature mice), and 16-month-old (old mice).

For all therapeutic experiments, we used anti-miR-93-5p and scramble anti-miRNAs. The dose of miR-93-5p and scramble anti-miRNA was $200 \mu \mathrm{~g} / \mathrm{kg}$, as described previously (2). The oligonucleotides were incorporated into neutral DOPC nanoliposomes. These were administered via intraperitoneal injection 24 hours before and 2 hours after the induction of sepsis using the CLP method. Mice in any group were monitored continuously after CLP until their deaths.

When death was confirmed (no heartbeat), intracardiac blood was drawn, and the mice were subjected to necropsy. Only mice that showed signs of peritonitis were included in the survival analysis. Liver, lung, heart, spleen, and kidney samples were formalin-fixed, frozen in optimal cutting temperature (OCT) medium, to prepare slides for microscopy, and frozen at $-80^{\circ} \mathrm{C}$ for later RNA extraction.

The animals were cared for according to the guidelines of the American Association for Accreditation of Laboratory Animal Care and the US Public Health Service Policy on Humane Care and Use of Laboratory Animals.

Murine cell preparations and flow cytometry

Mature, gender-matched, 8-month-old control mice (no procedure was performed), sham-operated mice, and CLP mice treated with anti-miR-93-5p or scramble RNA were sacrificed 24 hours after surgery. Intracardiac blood was collected from mice, and cells were isolated. Erythrocytes from blood samples were lysed by incubation in ammonium chloride solution $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ lysis buffer $\left(\mathrm{NH}_{4} \mathrm{Cl} 0.15 \mathrm{M}\right.$, KHCO3 $10 \mathrm{mM}, \mathrm{Na} 2 \mathrm{EDTA} 0.1 \mathrm{mM}, \mathrm{pH} 7.2-7.4$) for 5 min at room temperature. After blocking fragment crystallizable (Fc) receptors with Fc block (BD Biosciences) for 10 minutes at room temperature, cells
from intracardiac blood were stained with the antibodies (15 min . at $4^{\circ} \mathrm{C}$) listed in Supplementary Tables S5. Cells were analyzed with a BD LSRFortessa X-20 flow cytometer. Ten-color flow cytometry phenotype analysis of live myeloid cell singlets and 13-color flow cytometry phenotype analysis of live lymphoid cell singlets were performed using an LSRFortessa X-20. To develop the multi-color flow cytometry panels, we used antibody-capture beads (UltraComp eBeads, Invitrogen, Waltham, MA, USA) for single-color compensation controls. A Live/Dead Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific) was used first to gate out dead cells. Further gating adjustments were made based on fluorescence-minus-one (FMO) controls.

Baboon model of Staphylococcus (S.) aureus and Escherichia (E.) coli sepsis

Healthy baboons (Papio), 8-20.2 kg body weight with a leukocyte count less than $13,000 / \mu \mathrm{L}$ and hemoglobin $>10 \mathrm{~g} / \mathrm{dL}$, were randomly distributed between experimental groups. Gram positive S. aureus subspecies, aureus Rosenbach (ATCC 12598) was purchased from the American Type Culture Collection (Manassas, VA), and Gram negative E. coli, serotype B7-086a:K61, was in-house prepared the day before the challenge. Animals were challenged with 3×10^{10} heat-inactivated S. aureus (a lethal dose) (3) or 1-2 $\times 10^{10} \mathrm{CFU} / \mathrm{kg}$ E. coli (4) given by IV infusion over 2 hours. The heat-inactivated S. aureus model is a sepsis model $(3,5)$, where the host response is induced by pathogen associated molecular patterns (PAMPs) released from the bacterial wall, such as the peptidoglycan (6-8) and lipoteichoic acid (9) that are major contributors to sepsis and coagulopathy in Gram positive bacterial infections. Heat treatment inactivates thermo-labile exotoxins and prevents bacterial proliferation, allowing for standardization of the bacterial dose. Previous work from our Oklahoma group has shown that the baboon challenge with comparable amounts of either live or heat-inactivated S. aureus can induce sepsis that can be equally lethal (10). Hence, the heat-inactivated S. aureus model is a true sepsis model comparable with live S. aureus models.

The time point at which the bacterial infusion began was designated as T0. Eight hours after the start of the bacterial infusion (T+8), the animals were returned to the recovery cage and observed until they exhibited signs of unrecoverable organ failure and septic shock, at which time they were humanely euthanized. Surviving animals were euthanized on day 7. Blood was drawn from all animals before the
bacterial infusion (T0), two hours later $(T+2)$, four hours later $(T+4)$, six hours later $(T+6)$, eight hours later ($\mathrm{T}+8$), 24 hours later ($\mathrm{T}+24$), and at the time of euthanasia, when tissue samples were collected from select organs and processed for microscopy.

Patients

The patients from cohort \#1 were sampled as part of a prospective observational study of cancer patients with sepsis that was conducted at the Emergency Department of MD Anderson Cancer Center. Inclusion Criteria for Septic Cancer Patients: (1) High suspicion of infection by the emergency physician or clinical/diagnostic evidence of infection; (2) Two or more of the following SIRS criteria (a. leukocytes $>12,000 / \mathrm{mm}^{3}$ or $<4,000 / \mathrm{mm}^{3}$ or $>10 \%$ immature (band) forms, provided that no filgrastim or pegfilgrastim was administered within 30 days; b. heart rate >90 beats $/ \mathrm{min}$; c. respiratory rate >20 breaths $/ \mathrm{min}$ or partial pressure of $\mathrm{CO} 2<32 \mathrm{mmHg}$; d. oral temperature $>38^{\circ} \mathrm{C}$ or $<36^{\circ} \mathrm{C}$ or axillary temperature $>37^{\circ} \mathrm{C}$ or $<35^{\circ} \mathrm{C}$); and (3) age of 18 years and older.

Exclusion Criteria for Septic Cancer Patients: (1) inability to give informed consent or a person who has power of attorney for medical decision is not available; (2) moribundity; (3) active hospice care; and (4) active "Do Not Resuscitate" or "Do Not Intubate" orders. Blood samples (5 ml in EDTA) was drawn for analysis at the time of enrollment. Additional samples were drawn 1 day and 7 days later for comparison with the first blood sample if the patient was still hospitalized.

The patients from cohort \#2 were from a different and independent prospective observational study of cancer patients with sepsis that was conducted at the Emergency Department of MD Anderson Cancer Center. Briefly, all cancer patients who presented to the Emergency Department between 9/12/2019 and 2/10/2022 with high clinical suspicion of sepsis by the emergency physician and two or more of the SIRS criteria were included in this study. Inclusion and exclusion criteria were similar to the first study (cohort \#1). For this study, and after obtaining informed consent, blood samples (in EDTA tubes) were collected for analysis at the time of the patient's emergency department presentation. Demographic, emergency department presentation (including vital signs), clinical, cancer-related, and laboratory variables related to the visit were collected from the electronic health records. The Acute Physiology and Chronic Health Evaluation (APACHE II) (11), the Sequential Organ Failure Assessment
(SOFA) (12), Mortality in Emergency Department Sepsis (MEDS) (13), and Septic Oncologic Patients in the Emergency Department (SOPED) (14) were also calculated and analyzed for each patient.

For T cell isolation experiments, buffy coats from three healthy donors were provided by the Gulf Coast Regional Blood Center (barcodes: W0446 21 368914, W0446 21 351244, W0446 21 351246).

Isolation and activation of primary human T cells

Standard Ficoll-mediated isolation of PBMCs was followed by PAN-T cell isolation using the human Pan T cell Isolation Kit (Miltenyi Biotec, Cat\# 130-096-535) according to the manufacturer's instructions. T cells were cultured and activated as described previously (15) in RPMI 1640 plus 10\% human AB serum at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}$, together with $6.25 \mu \mathrm{~L} / 1$ million cells Dynabeads ${ }^{\mathrm{TM}}$ Human TActivator CD3/CD28 for T Cell Expansion and Activation (Thermo Fisher, Cat\# 11161D) and 50IU/mL human IL2 (R\&D, Cat\# 202-IL). IL2 supplemented RPMI 1640 plus 10\% human AB serum medium was refreshed every 48h. Medium was refreshed, and cell density was assessed using hemacytometermediated counting every 48 h .

RNA extraction from plasma, peripheral blood mononuclear cells, and whole blood

Total plasma, peripheral blood mononuclear cells (PBMC), white blood cells (WBCs), and whole blood RNA were extracted and reverse transcribed as previously described (16). RNA was obtained from $100 \mu \mathrm{~L}$ of plasma, PBMCs, or whole blood using the total RNA purification kit (NorgenBiotek, Cat. \#37500) according to the manufacturer's instructions. At the end of the extraction process, RNA was eluted in $50 \mu \mathrm{~L}$ elution solution, and RNA concentrations and quality were determined using NanoDrop1100. For the normalization of plasma sample-to-sample variation in the RNA isolation step, the C. elegans, cel-miR-39-3p and cel-miR-54-3p, (ThermoFisher SCIENTIFIC, Cat \# A25576, and Cat \#A25576), 25 fmol of each in a total volume of $1 \mu \mathrm{~L}$, were used. The geometric means (17) of the Ct values of cel-miR-39-3p and cel-miR-54-3p were used for normalization. For the normalization of sample-to-sample variation of RNA extracted from PBMCs and whole blood, U6 was used as an endogenous normalizer.

RNA extraction from solid tissues (liver, kidney, heart)

Solid organs were homogenized in liquid nitrogen before RNA isolation in Trizol (Life Technologies Corporation, Carlsbad, CA, USA). Next, the RNA isolation included prolonged precipitation and centrifugation steps to preserve the small RNA fractions. Phase separation was made by incubation on ice for 30 min , followed by centrifugation at $12,000 \mathrm{~g}$ for 20 min at $4^{\circ} \mathrm{C}$. Total RNA samples were precipitated overnight on ice and centrifuged at full speed $(21,000 \mathrm{~g})$ for 30 min at $4^{\circ} \mathrm{C}$. For the normalization of sample-to-sample variation of RNA extracted from organs, U6 was used as an endogenous normalizer.

cDNA synthesis

miRNAs: RNA was reverse transcribed using the TaqMan® miRNA Reverse Kit (Applied Biosystems, Cat. \#4366596) in a 10- $\mu \mathrm{L}$ reverse transcription (RT) reaction containing 10 ng of RNA, $0.1 \mu \mathrm{~L}$ of 100 mM dNTPs, $0.67 \mu \mathrm{~L}$ of Multiscribe reverse transcriptase, $1 \mu \mathrm{~L}$ of $10 \times$ RT buffer, $0.13 \mu \mathrm{~L}$ of RNase inhibitor, and $1 \mu \mathrm{~L}$ of $5 \times$ miRNA-specific stem loop RT primer (Applied Biosystems). Reverse transcription was performed in a Bio-Rad DNA engine with the following program: $16^{\circ} \mathrm{C}$ for 30 minutes, $42^{\circ} \mathrm{C}$ for 30 minutes, and $85^{\circ} \mathrm{C}$ for 5 minutes. The cDNA was diluted $1: 3$ and stored at $-20^{\circ} \mathrm{C}$ until analysis.

Genes: The High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Cat\# 4368814) was used according to the manufacturer's instructions using $1 \mu \mathrm{~g}$ RNA input in a $20 \mu \mathrm{~L}$ reaction. Reverse transcription was performed using the following program: $25^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 37^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 85^{\circ} \mathrm{C}$ for 5 min , and then $4^{\circ} \mathrm{C}$ on hold. cDNA was stored at $-20^{\circ} \mathrm{C}$ until analysis.

RT-qPCR profiling

miRNAs: The diluted cDNA $(3 \mu \mathrm{~L})$ was used as a template in a quantitative PCR (qPCR) reaction with a total final volume of $5 \mu \mathrm{~L}$. DNA amplification was performed using TaqMan primers specific for each analyzed miRNA (together with SsoFastTM Probes Supermix (Bio-Rad Laboratories, Cat. \#1725231). The reaction started with an incubation period of 3 minutes at $95^{\circ} \mathrm{C}$, followed by 40 cycles of 5 seconds at $95^{\circ} \mathrm{C}$, and 30 seconds at $60^{\circ} \mathrm{C}$. All experiments were performed in triplicate. Ct values beyond the upper limit of the measuring system are imputed as 40 . The raw Ct values, for the plasma
samples, were normalized by the Ct values of cel-miR-54-3p and cel-miR-39-3p. For RNA extracted from PBMCs and solid tissues (liver, kidney, and heart), U6 was used as an endogenous control.

Genes: qPCR was performed using SsoAdvanced Universal SYBR Green Supermix according to the manufacturer's instructions with a cDNA input of 2 ng and forward/reverse primer concentrations of 250 nM in a $5-\mathrm{uL}$ reaction. The reaction started with an incubation period of 3 minutes at $95^{\circ} \mathrm{C}$, followed by 40 cycles of 15 seconds at $95^{\circ} \mathrm{C}$ and 30 seconds at $60^{\circ} \mathrm{C}$. For both miRNAs and genes, the relative expression level of each miRNA was calculated using the equation $2^{-\Delta C T}$. Primer sequences are provided in Supplementary Table S6.

Multiplex cytokine assay

Blood samples were processed for plasma cytokine level analyses. Plasma cytokine levels were measured using the MILLIPLEX MAP Mouse Cytokine Magnetic Bead Panel (MCYTOMAG-70K) according to the manufacturer's protocol. The analysis includes 16 pro-inflammatory [granulocytecolony stimulating factor (GCSF), eotaxin, granulocyte-macrophage colony-stimulating factor (GMCSF), interferon-gamma (IFNG), interleukin 1 alpha (IL1A), IL1B, IL2, IL5, IL6, IL9, IL12 (p40), IL12 (p70), IL17, macrophage inflammatory protein 1 alpha (MIP1A), MIP1B and tumor necrosis factor-alpha (TNFA)] and three anti-inflammatory cytokines (IL4, IL10, and IL13).

Histological assessment of tissue injury

For quantitative analysis of tissue damage, we analyzed the lung, heart, kidney, liver, and spleen of 16 -month-old CLP-mice treated with anti-miR-93-5p or scramble miRNA form the survival experiment. For each mouse, all organs were formalin-fixed and paraffin-embedded in a single block. The embedded tissue blocks were cut into $4-\mu \mathrm{m}$-thick sections, and stained with hematoxylin and eosin (H\&E), Periodic acid-Schiff (PAS), Masson's trichrome, or Jones' stain.

The heart tissue damage was scored using a modified method from the one described by Kishimoto et al. (18). Briefly, three different parameters were analyzed: myocardial necrosis, fibrosis, and immune infiltrates. Each of the three parameters was scored from 0 to 4 ($0=$ absent, $1<25 \%$ of the tissue, $2=25-50 \%, 3=50-75 \%$, and $4>75 \%$) on an ordinal scale with a step size of 0.5 . The tissue damage score represents the sum of the three parameters.

The lung tissue pathological assessment was performed as previously described (19). Briefly, we scored from 0 to $3(0=$ absent, $1=$ mild, $2=$ moderate, $3=$ severe $)$ using an ordinal scale with a step size of 0.5 for the presence of exudates, hyperemia/congestion, immune infiltrates, intraalveolar hemorrhage/debris, and cellular hyperplasia. The tissue damage score represents the sum of all five parameters.

The kidney damage pathological scoring was performed similarly to the one used by Yu et. al. (20). Using a 0 to 4 ordinal scale with a step size of 1 scoring system ($0=$ none, $1=0-20 \%, 2=20 \%-$ $50 \%, 3=50 \%-70 \%, 4>70 \%$), we looked for tubules that displayed necrosis, loss of brush border, interstitial edema, vacuolization, tubule dilatation, and immune infiltrates. For the analysis of the tubules and glomeruli, the PAS and Jones' silver stain were essential. The tissue damage score represents the sum of the six parameters.

The liver damage was analyzed using a modified method from the one described previously by Martin et al. (21). Four parameters - immune infiltration, hypoperfiusion to necrosis, central vein congestion, and sinusoidal congestion were scored from 0 to $3(0=$ none, $1=$ mild, $2=$ moderate, $3=$ severe) on an ordinal scale with a step size of 0.5 scale. The tissue damage score represents the sum of the four parameters.

For spleen tissue damage analysis, we used a modified version of the protocol reported by Karamese et al. (22). We analyzed five different parameters: increased immune infiltrate, apoptotic cells, hemosierin deposits, hemorrhage, and thrombi, which were scored from 0 to 4 (none -0 , mild -1 , moderate -2 , severe -3 , and more severe -4) on an ordinal scale with a step size of 0.5 . The tissue damage score represents the sum of the four parameters.

Additionally, we noted an increasing number of PAS-positive foamy immune cells in the lungs and spleens of mice, and these were scored separately. We counted PAS-positive immune cells from five high-power fields with the most abundant PAS-positive cell infiltrate (40x magnification), and averaged the five data points, and reported as the number of PAS-positive macrophages/HPF.

The slides were evaluated using an Olympus BX46 (Olympus Europe). Histological images were acquired with the PANNORAMIC 1000 digital slide scanner (3DHISTECH).

TUNEL assay

Because we morphologically observed apoptotic cells (shrinking and fragmentation of cells) in the spleens and lungs of mice, we used the TUNAL assay to further analyze apoptosis. For this purpose, we built two tissue microarrays (TMA), one including the spleens and a second one including the lungs of 8 -month-old mice from the survival study. Representative areas with immune cells showing morphological features of apoptosis were identified on H\&E slides and transferred to tissue microarrays (TMAs) with one core per sample. Each core measured 1 mm in diameter. Spleen and lung TMA sections of $4 \mu \mathrm{~m}$ were used for the TUNEL assay by means of the HRP-DAB TUNEL staining kit (ab206386), and the slides were counterstained by methyl blue following the protocol provided by the TUNEL staining kit. For the quantification TUNEL assay, tissues were analyzed by quantifying at least 3-5 images at 40x magnification (HPF) per core. The data were reported as number of positive cells per HPF. The slides were evaluated using an Olympus BX46 (Olympus Europe). Histological images were acquired with the PANNORAMIC 1000 digital slide scanner (3DHISTECH).

Cell culture

MEC-1 and MEC-2 serial sister cell lines are CD5 ${ }^{\text {lowl- }}$ CLL cell lines established from a CLL patient in prolymphocytoid transformation to B-cell prolymphocytic leukemia obtained from DMSZ. The CLL HG3 cell line was kindly provided by Dr. Anders Rosen (Department of Clinical and Experimental Medicine; Division of Cell Biology, Linköping University, Linköping, Sweden). THP-1 (AML) and JURKAT (T-ALL) cells were purchased from ATCC. NB4 cells (acute promyelocytic leukemia) were obtained from DMSZ. These cells were cultured in RPMI-1640 medium (Sigma, St. Louis, MO) with 10% fetal bovine serum and penicillin-streptomycin ($15 \mu \mathrm{~g} / \mathrm{ml}$; Sigma-Aldrich, St. Louis, MO) at $37^{\circ} \mathrm{C}$ in a 5% CO2 incubator. OCI-LY10 cells were obtained from DMSZ and were cultured in 80% Iscove's MDM (Sigma, St. Louis, MO) + 20\% fetal bovine serum and penicillin-streptomycin ($15 \mu \mathrm{~g} / \mathrm{ml}$; SigmaAldrich, St. Louis, MO) at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}$ incubator. All cell lines were validated by the Cytogenetics and Cell Authentication Core at MD Anderson using short tandem repeat DNA fingerprinting and were
regularly negative for Mycoplasma contamination (MycoAlert Mycoplasma Detection Kit; Lonza, Morristown, NJ).

CRISPR/Cas9-mediated miR-93 knockout

The method described by Rosenlund et al. (23) was used for generating miR-93 knockout clones from JURKAT cells and NB4 using two sgRNAs. Electroporation was performed using the Amaxa Cell Line Nucleofector Kit V (Lonza, Cat\# VCA-1003) according to the manufacturer's instructions using program X-001. For knockout validation, DNA from single cell-derived clones was isolated using the Genomic DNA Mini Kit (IBI Scientific, Cat\# IB47202). PCR was performed using GoTaq Green Master Mix (Promega, Cat\# M712) using the following program: $95^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 40$ cycles of $\left(95^{\circ} \mathrm{C}\right.$ for 30 sec , $60^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 2 min), $72^{\circ} \mathrm{C}$ for 5 min , and then $4^{\circ} \mathrm{C}$ on hold, and PCR products were assessed on 3\% agarose gel. Sanger sequencing was performed by the MD Anderson DNA sequencing core facility using both forward and reverse primers. Sequences were analyzed using ChromasPro V2.6.6.

Sequences of sgRNAs and PCR primer sequences for validation by PCR and sanger sequencing are provided in Supplementary Table S6.

AGO2-RIP-Chip

AGO2-RIP was performed as described previously (24). In brief, EZview ${ }^{\text {TM }}$ Red Protein G Affinity Gel Beads (Sigma, Cat\# E3403) were blocked with 5% BSA and $500 \mu \mathrm{~g} / \mathrm{mL}$ salmon sperm DNA (Sigma, D7656) in NT2 buffer (50 mM Tris, $\mathrm{pH} 7.4 ; 150 \mathrm{mM} \mathrm{NaCl} ; 1 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.05 \%$ Nonidet P-40) for 1 h at $4^{\circ} \mathrm{C}$. Then, $10 \mu \mathrm{~g}$ of anti-AGO2 antibody or normal mouse IgG (Supplementary Table S6) was coupled to the affinity gel beads rotating overnight at $4^{\circ} \mathrm{C}$. Beads were washed in NT2 buffer and resuspended in IP buffer (1 xNT 2 buffer, $40 \mathrm{U} / \mu \mathrm{L}$ RNAseOUT, $5 \mu \mathrm{~L}$ vanadyl ribonucleoside complex, $0.1 \mathrm{M} \mathrm{DTT}$, M EDTA). Per JURKAT clone and replicate, 30 million cells were lysed on ice in polysome lysis buffer ($5 \mathrm{mM} \mathrm{MgCl} 2,100 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ Hepes, $\mathrm{pH} 7,0.5 \%$ Nonidet P-40, 1 mM DTT, $40 \mathrm{U} / \mu \mathrm{L}$ RNAseOUT, and $1 \times$ Protease Inhibitor cocktail); the lysate was added to the beads in IP buffer. After an input sample was taken, the mix rotated overnight at $4^{\circ} \mathrm{C}$ before flow through and IP fractions were collected for RNA and protein extraction. RNA fractions were dissolved in Qiazol (Qiagen) and stored at $-80^{\circ} \mathrm{C}$ until
isolation; protein fractions were dissolved in Laemmli buffer (BioRad) substituted with 2mercaptoethanol, boiled at $100^{\circ} \mathrm{C}$ for 10 min and stored at $-20^{\circ} \mathrm{C}$ until analysis. RNA was extracted using the miRNeasy mini (input fraction) or micro (IP fraction) kit (Qiagen, Cat\# 217004 and 217084, respectively) according to the manufacturer's instructions. RNA quality was assessed using the Agilent Bioanalyzer 2100 using the Eukaryote Total RNA Nano Assay version 2.6.

Genome wide gene expression data analysis from S. aureus and E. coli baboon models

Bulk RNA data from white blood cells (WBCs) was collected on baboons under two different sepsis models (live E. coli and heat-inactivated S. aureus) and 4-5 time points ($2,4,6,8$, and 24 hours after bacteria infusion). Three baboons were observed under each intervention model, and total RNA was extracted from their WBCs at each time point. RNA-sequencing was performed on a NextSeq 500 Flowcell, High SR75 (Illumina, San Diego, CA, USA) following library preparation using the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen, Vienna, Austria). The library preparation and sequencing were performed by the Clinical Genomics Core at the OMRF. RNA-seq data processing followed the guidelines and standard practices of the ENCODE and modENCODE consortia. 75 bp single end raw sequencing reads, in a FASTQ format, were trimmed of residual adaptor sequences using Scythe software. Low-quality bases at the beginning or the end of sequencing reads were removed using sickle software, and then the quality of the remaining reads was confirmed with FastQC. Trimmed quality reads were aligned to the Papio anubis (olive baboon) genome reference (PapAnu2.0) using STAR v2.4.0h, and transcript-level read counting was performed with HTSeq v0.5.3p9. Readcount normalization and differentially expressed analyses were performed using the edgeR package from Bioconductor. Expression values normalized with the variance modeling at the observational level (voom) function were analyzed for differential expression using the standard functions of the limma package. The group option of the voom function was used to accommodate the serial data collection design, and time series analysis methods, implemented in R package MasigPro, were used to characterize the deregulation of genes related to sepsis over time. Moderate t test p-values were adjusted for multiple testing using the false discovery rate (FDR) method, and FDR <0.05 was used to filter significant differentially expressed transcripts between conditions and across time. Annotations for
baboon transcripts and their human homologs were retrieved from the ensemble database using Biomart.

miRNA expression profiles from public resources

Global miRNA expression profiles (CCLE_miRNA_20180525.gct) were downloaded from the Cancer Cell Line Encyclopedia (CCLE; https://depmap.org/portal/download/). miR-93 expression was pooled by cancer subtype and displayed as normalized read counts.

Normalized miRNA expression data from CD3 ${ }^{+}$, CD14 $^{+}$, CD15 $^{+}$, CD19 $^{+}$, and CD56 ${ }^{+}$immune cell subsets were extracted from series GSE56590 using the following patient subsets with different time point measurements $(\mathrm{n}=10)$: H 1 (timepoints $\mathrm{t} 0, \mathrm{t} 1, \mathrm{t} 2), \mathrm{H} 2(\mathrm{t} 0), \mathrm{H} 3(\mathrm{t} 0, \mathrm{t} 1, \mathrm{t} 2), \mathrm{H} 4(\mathrm{t} 0), \mathrm{H} 5(\mathrm{t} 0)$, and H 6 (t0).

Microarray analysis

A microarray analysis was performed for each clone (i.e., JURKAT parental, Control, miR-93 KO\#1 and KO\#2) in duplicate for both input and IP fractions using the Applied Biosystems human Clariom ${ }^{\text {TM }} \mathrm{S}$ assay (Cat\# 902927) according to the manufacturer's instructions. Relative signal intensities were extracted using Affymetrix feature extraction software version 1.1.0.1567. The CEL files, generated from Affymetrix RNA microarray image analysis software, were processed through Transcriptome Analysis Console 4.0 which normalizes (and applies the $\log _{2}$ function to) array signals using a robust multiarray averaging algorithm.

Approximately 16,000 microarray probes that were expressed above background in both duplicates of either the parental, control, or both miR-93 KO samples were selected for further analysis. Target genes of miR-93 were defined as being enriched in the AGO2-IP vs. the control IgG-IP fraction of the parental or control samples (i.e., miR-93-5p expressed) but not in either of the two generated knockout clones (i.e., miR-93-5p expression absent). Differentially expressed mRNAs in a comparative analysis were further identified by analysis of variance (eBay) with a P-value cutoff of 0.05 and a fold change more than 1.5 or less than -1.5 .

MiRNA target prediction and pathway analysis

We obtained experimentally confirmed miRNA-mRNA interactions from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw) and miRWalk 3.0 (http://zmf.umm.uni-

 heidelberg.de/apps/zmf/mirwalk2/). Integrated pathway analyses were performed with BioPlanet 2019 using Enrichr bioinformatics resources (http://amp.pharm.mssm.edu/Enrichr/). A P-value < 0.01 was considered significant. For visualizing and clustering the pathways from the AGO2-immunoprecipitation experiment, the Appyters scatter plot tool was used (25). The clusters were built using the Leiden algorithm. Points were plotted on the first two Uniform Manifold Approximation and Projection dimensions.
STAT1 knockdown

STAT1 shRNAs were purchased as ready-to-use pGFP-C-shLenti containing lentiviral particles from Origene (Herford, Germany; Cat\# TL301349V). JURKAT cells were transduced with 4 anti-STAT1 shRNAs and 1 non-targeting control shRNA at a MOI of 10 . GFP-positive cells were sorted at day 5 post-transduction using a BD FACS Aria III cell sorter. STAT1 knockdown was confirmed at the mRNA (RT-qPCR) and protein (Western blotting) levels. Results stemming from the two most efficient antiSTAT1 shRNAs and the non-targeting control shRNA were presented in the manuscript.

Western blotting

Protein concentration was quantified by the Bradford assay (Bio-Rad). In total, 20 ug of proteins were loaded on 4\%-20\% acrylamide Criterion TGXTM precast gels (Bio-Rad) and transferred to nitrocellulose membranes by the semidry method. The membranes were incubated overnight with the corresponding primary antibodies for MCM7 and GAPDH (normalizer) (Supplementary Table S6) and then incubated with the appropriate horseradish peroxidase-conjugated secondary antibody. Immunoreactivity was detected by incubation with ECL SuperSignal West Femto Substrate (ThermoFisher Scientific), and detected by the autoradiographic film.

Statistical analysis

Statistical analysis and graphical representation were performed with GraphPad Prism (version 8.1.2). P values <0.05 were considered statistically significant. The Shapiro-Wilk normality test was performed for each group to assess whether the data were normally distributed. For normally distributed
data, a 2-tailed t test was used to compare mean values between different groups. When one of the groups did not pass the normality test, the Mann-Whitney-Wilcoxon nonparametric test was used to assess statistical differences between the different groups. For samples with matched repeated measures, we performed the ANOVA test with Geisser-Greenhouse correction for normally distributed data and the Friedman test if the data did not pass the normality test. Correlation analyses between expression data and clinical parameters were performed using the Pearson correlation test. We adjusted for multiple testing using the false discovery rate (FDR) (26). The statistical P values from all the cell lineages (lymphoid or myeloid) were obtained and adjusted by the p.adjust function in R. To adjust for the correlations of the data obtained from the same subject (baboon gene expression data), we applied a linear mixed effects model (LMM) (27) by specifying time as the covariate and baboon ID as the random effect. We used the most common correlation structure, exchangeable, to capture the correlation between the repeated measurements. The method was implemented using the Ime4 package in R.

Survival curves were generated by the Kaplan-Meier method. For survival studies, a log-rank test was used. All values are expressed as mean and standard deviations (s.d.).

Supplemental Figures and Tables
 Supplementary Figure 1

Supplementary Figure 1. Principal component analysis (PCA) plot. A scatter plot showing the coordinates of the samples on the three main principal components. Controls are represented as red dots; sepsis as blue dots.

Supplementary Figure 2

Supplementary Figure 2. MiR-93-5p is a potential therapeutic target in sepsis. (A) Eight-week-old male and female C57BL/6 mice were injected intraperitoneally with scramble miRNA ($n=3$) or miR-K12-12* ($n=5$); 24 hours after treatment, all mice were sacrificed. (B) Plasma levels of miR-K12-12*, miR-16a-5p, miR-93-5p, and miR-182-5p in mice injected with scramble miRNA ($n=3$) compared to mice injected with anti-miR-93-5p $(n=5)$. The relative expression level was normalized to cel-miR-39$3 p$ and cel-miR-54-3p. (C) Levels of the four sepsis-induced miRNAs across 5 different immune cell types isolated from 10 healthy donors. Data are presented as mean \pm sd; paired t test, ${ }^{* * * *} \mathrm{P}<0.0001$. ($\mathbf{D}-\mathbf{G}$) Expression of Interferon gamma (IFNG) and sepsis miRNAs miR-486-5p, miR-16-5p, and miR-$93-5 p$ in resting and activated primary human T cells isolated from three healthy donors. RT-qPCR, mean \pm error; paired t test, ns - non-significant, * $\mathrm{P}<0.05$, ** $\mathrm{P}<0.01$.

Supplementary Figure 3

Supplementary Figure 3. MiR-93-5p and MCM7 expression in WBCs from two baboon models of

 sepsis. (A) The levels of miR-93-5p in WBCs at different time points (before - 0h and $2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$, and 24 h after induction of sepsis) in an E. coli (Gram-negative) baboon sepsis model ($\mathrm{n}=3$) (upper panel). MiR-93-5p dynamics in WBCs from baboons inoculated with E.coli $(\mathrm{n}=3$) (lower panel). (\mathbf{B}) The levels of miR-93-5p in WBCs at different time points (before - 0h and $2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$, and 24 h after induction of sepsis) in a S. aureus (Gram-positive) baboon sepsis model ($\mathrm{n}=3$) (upper panel). MiR-93-5p dynamics in WBCs from baboons inoculated with S. aureus $(\mathrm{n}=3$) (lower panel). (C) The levels of MCM7 in WBCs at different time points (before - Oh and $2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$, and 24 h after induction of sepsis) in an E. coli (Gram-negative) baboon sepsis model ($n=3$) (upper panel). MCM7 dynamics in WBCs from baboons inoculated with E. coli $(\mathrm{n}=3$) (lower panel). (D) The levels of MCM7 in WBCs at different time points (before - Oh and $2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$, and 24 h after induction of sepsis) in an S. aureus (Gram-positive) baboon sepsis model $(\mathrm{n}=3)$ (upper panel). MCM7 dynamics in WBCs from baboons inoculated with S . aureus $(\mathrm{n}=3)$ (lower panel). Data are presented as means \pm s.d.
Supplementary Figure 4

Supplementary Figure 4. Correlation between miR-93-5p levels in PBMCs and clinical variables in cohort \#2 of sepsis patients with cancer. (A) Correlation between the level of miR-93-5p and the Septic Oncologic Patients in the Emergency Department (SOPED) score, (B) absolute lymphocytes count (ALC), (C) APACH II score, (D) absolute neutrophils count (ANC), (E) Sepsis-related Organ Failure Assessment (SOFA) score, (F) C reactive protein (CRP) level, (G) Mortality in Emergency Department Sepsis (MEDS) score, and (H) Charlson Comorbidity Index (CCI). Between the miR-93-5p expression level and each clinical parameter, a Pearson correlation was computed.

Supplementary Figure 5

Supplementary Figure 5. Correlation between miR-93-5p levels in plasma and clinical variables in cohort \#2 of sepsis patients with cancer. (A) Correlation between the level of miR-93-5p and APACH II score, (B) absolute neutrophils count (ANC), (C) Sepsis-related Organ Failure Assessment (SOFA) score, (D) C reactive protein (CRP) level, (E) Mortality in Emergency Department Sepsis (MEDS) score, and (F) Charlson Comorbidity Index (CCI). Between the miR-93-5p expression level and each clinical parameter, a Pearson correlation was computed.

Supplementary Figure 6

Supplementary Figure 6. Correlation between miR-93-5p levels in PBMCs and plasma and miR-25-3p, miR-106b-5p, and MCM7 from the same biofluids in sepsis cohort \#2. Correlation between miR-25-3p and miR-106b-5p levels in plasma and clinical variables in sepsis cohort \#2. (A) Correlation between the levels of miR-93-5p and miR-25-3p, miR-106b-5p, and MCM7 in PBMCs. (B) Correlation between the levels of miR-93-5p and miR-25-3p, miR-106b-5p, and MCM7 in plasma. (C) Correlation between the level of miR-25-3p levels in plasma and Septic Oncologic Patients in the Emergency Department (SOPED) score and absolute lymphocytes count (ALC). (D) Correlation between the level of miR-106b-5p levels in plasma and SOPED score and absolute lymphocytes count (ALC). Between the miRNA expression level and MCM7/clinical parameters a Pearson correlation was computed.

Supplementary Figure 7

Supplementary Figure 7. Detailed overview of the sepsis CLP anti-miR-93-5p experiment. Male and female C57BL/6 mice of different ages were treated intraperitoneally, 24 -hours before CLP induced-sepsis, with scramble miRNA or anti-miR-93-5p. Two hours after the induction of sepsis the treatment was repeated. After surgery, antibiotic ointment was applied at the incision site, and mice were hydrated with 100μ PBS i.p. Mice were monitored for 72 hours after CLP, at the end of the 72 h surviving mice were euthanized. At the time of death, blood was drawn, and key organs were harvested during the postmortem dissection.

Supplementary Figure 8

Plasma miRNA levels after CLP 4.5 Months vs. 30 Months mice

Supplementary Figure 8. Plasma levels in mice of different ages. Plasma levels of miR-93-5p were measured in 4.5 -month-old ($n=3$) and 30-month-old ($n=6$) sepsis mice (CLP). Data are presented as means \pm s.d. (Student's t test; n.s., not significant).

Supplementary Figure 9

D

PAS lung |

Supplementary Figure 9. Tissue damage score in 16-month-old sepsis mice treated with

 scramble miRNA compared to sepsis mice treated with anti-miR-93-5p. (A) Lung injury score in CLP sepsis mice treated with scramble miRNA $(n=6)$ or with anti-miR-93-5p $(n=9)$. (B) Heart injury score in CLP sepsis mice treated with scramble miRNA $(n=6)$ or with anti-miR-93-5p $(n=9)$. (C) Liver injury score in CLP sepsis mice treated with scramble miRNA ($n=6$) or with anti-miR-93-5p ($n=9$). Black arrows represent necrotic hepatic parenchyma. (D) Spleen injury score in CLP sepsis mice treated with scramble miRNA $(n=6)$ or with anti-miR-93-5p $(n=9)$. (E) Kidney injury score in CLP sepsis mice treated with scramble miRNA ($n=6$) or with anti-miR-93-5p $(n=8)$. Black arrows represent acute inflammatory infiltrates. (F) TUNEL-positive cells/high-power field in the lungs of CLP sepsis mice treated with scramble miRNA $(n=3)$ or with anti-miR-93-5p $(n=8)$. (G) TUNEL-positive cells/high power field in the spleens of CLP sepsis mice treated with scramble miRNA $(n=4)$ or with anti-miR-93-5p (n = 8). (H) PAS-positive cells/high power field in the lungs of CLP sepsis mice treated with scramble miRNA $(n=6)$ or with anti-miR-93-5p ($n=9$). Yellow arrows represent PAS-positive immune cells, and yellow circles represent accumulations of PAS-positive immune cells. (I) PAS-positive cells/high-power field in the spleens of CLP sepsis mice treated with scramble miRNA ($n=6$) or with anti-miR-93-5p (n = 8). Yellow arrows represent PAS-positive immune cells, and yellow circles represent accumulations of PAS-positive immune cells. Data are presented as means \pm s.d. (Student's t test; n.s., not significant; * $\mathrm{P}<0.05$).
Supplementary Figure 10

Supplementary Figure 10. Effect of anti-miR-93-5p therapy on the lymphoid lineage. (A) The percentage of CD19 ${ }^{+}$and (B) CD19+ PD-L1 B cells in control, sham-operated, CLP-induced sepsis treated with scramble miRNA, and CLP-induced sepsis treated with anti-miR-93-5p mice. (C) The percentage of T-helper cells (CD4 ${ }^{+}$) and of different subtypes of T-helper: (D) CD4+ central memory cells (CD4 ${ }^{+} \mathrm{T}_{\mathrm{CM}}$), and (E) CD4 ${ }^{+}$naïve cells in the four experimental groups. (F) The percentage of $\mathrm{T}_{\text {reg }}$ cells (CD4 ${ }^{+}$CD25 ${ }^{+}$) in control, sham-operated, CLP-induced sepsis treated with scramble miRNA, and CLP-induced sepsis treated with anti-miR-93-5p mice. (G) The percentage of T-cytotoxic cells (CD8 ${ }^{+}$), and of (H) CD8 ${ }^{+}$PD1 ${ }^{+}$cells. (I) The percentage of CD8 ${ }^{+}$central memory (CD8 ${ }^{+} \mathrm{T}_{\mathrm{Cм}}$) cells. (J) The percentage of CD8 ${ }^{+} \mathrm{T}_{\text {см }}$ expressing PD1. (K) The percentage of CD8 ${ }^{+}$effector memory cells (CD8 ${ }^{+} \mathrm{T}_{\mathrm{EM}}$) expressing PD1 ${ }^{+}$, and (L) CD8 ${ }^{+}$naïve cells in the four experimental groups. Data are presented as means \pm s.d. (Student's t test; ${ }^{*} \mathrm{P}<0.05 ;{ }^{* *} \mathrm{P}<0.01$; ${ }^{* * * P}<0.001$; **** $\mathrm{P}<0.0001$; P values that are significant after adjustment for multiple testing using the false discovery rate (FDR) are marked blue).

Supplementary Figure 11

Supplementary Figure 11. Effect of anti-miR-93-5p therapy on the myeloid lineage. (A) The percentage of the whole pool of monocytes (CD11b+ CSF1R+) in control, sham-operated, CLP-induced sepsis treated with scramble miRNA and CLP-induced sepsis treated with anti-miR-93-5p mice. (B) The percentage of CD11b ${ }^{+}$LyC $^{\text {low }}$ cells to the whole pool of CD11b+ CSF1R + monocytes and of (C) LyC ${ }^{\text {low }}$ PD-L1+ monocytes in the four experimental arms. (D) The percent of macrophages (CD11b+ F4/80 ${ }^{+}$) in control, sham-operated, CLP-induced sepsis treated with scramble miRNA, and CLP-induced sepsis treated with anti-miR-93-5p mice. (E) The percent of granulocytic myeloid-derived suppressor cells (GMDSC) and (F) monocytic myeloid-derived suppressor cells (M-MDSC) in control, sham-operated, CLPinduced sepsis treated with scramble miRNA, and CLP-induced sepsis treated with anti-miR-93-5p mice. The percentage of (G) CSF1R- neutrophils (CSF1R- Ne) and (H) CSF1R+ neutrophils (CSF1R+ Ne) gated to $\mathrm{SSC}^{\text {high }} \mathrm{CD45}^{+}$in the four experimental groups. Data are presented as means \pms.d. (Student's t test; *P < 0.05; ***P < 0.001; P values that are significant after adjustment for multiple testing using the false discovery rate (FDR) are marked blue).

Supplementary Figure 12

Supplementary Figure 12. Effect of in vivo miRNA treatments on organ histopathology in CLP sepsis mice treated with scramble miRNA, CLP sepsis mice treated with anti-miR-93-5p compared to control mice. Representative organ (lung, heart, kidney, liver, and spleen) histology section stained with hematoxylin and eosin (H\&E) from mice untreated (Control) and treated with scramble miRNA and anti-miR-93-5p at a concentration of $200 \mu \mathrm{~g} / \mathrm{kg}$ of body weight. The treatment groups received two therapeutic doses, the first one 24 hours before the induction of sepsis and a second one two hours after the induction of sepsis. All mice were sacrificed 24 hours after sepsis induction. Images were taken at 100X magnification (10X objective lens).

Supplementary Figure 13

A

C

E
hsa-miR-93 - CTGGGGGCTCCAAAGTGCTGTTCGTGCAGGTAGTGTGATTACCCAACCTACTGCTGAGCTAGCACTTCCCGAGCCCCCGG Parental - CTGGGGGCTCCAAAGTGCTGTTCGTGCAGGTAGTGTGATTACCCAACCTACTGCTGAGCTAGCACTTCCCGAGCCCCCGG
 Control - CTGGGGGCTCCAAAGTGCTGTTCGTGCAGGTAGTGTGATTACCCAACCTACTGCTGAGCTAGCACTTCCCGAGCCCCCGG
 CTGGGGGCTCCAAAGTGCTGTTCGT 111111111111111111111111111111 Clone KO\#2 - CTGGGGGCTCCAAAGTGCTGTTCGT- \qquad ACTGCTGAGCTAGCACTTCCCGAGCCCCCGG

Supplementary Figure 13. Validation of miR-93 knockout in JURKAT cells. (A) Expression levels of miR-93 as reported by the Cancer Cell Line Encyclopedia (CCLE). Among blood cancers, acute lymphoblastic leukemia (T/B-ALLs), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and non-Hodgkin lymphoma show the highest level of miR-93. (B) RT-qPCR measurement of miR-93$5 p$ levels in 6 different cell lines, including T-ALL (JURKAT), CLL (Mec1, MEC2, HG3), DLBCL (OciLy10), and AML (THP-1). Data are presented as means. (C) Schematic of the genomic location of hsa-miR-93. MiR-93 is located intronic of minichromosome maintenance complex component 7 (MCM7) as a miRNA cluster, flanked by miR-25 and miR-106b. Two single guide RNAs (sg1/2) were designed to flank the loop region of miR-93. Forward (F) and reverse (R) primers used for validation by PCR and sequencing are indicated. (D) PCR analysis of multiple CRISPR/Cas9-created clones showing unaffected, heterozygous, and homozygous knockouts. Clones shown in red were used for further analysis. (E) The sequence of hsa-miR-93 is indicated with mature $-3 p$ and $-5 p$ sequences (bold, underscored), the location of sgRNAs (yellow), and PAM sequences (blue). Sequencing results of JURKAT parental cells and three clones, one unaffected control and two homozygous knockouts are shown. A 24-bp deletion encompassing the miRNA loop region is observed in both KO clones. (F) The more prevalently expressed arm of each miRNA was assessed, showing absent expression of miR-93$5 p$ in both KO clones while neighboring miR-25-3p and miR-106b-5p remain unaffected. (G) The knockout does not affect the levels of the miRNA host gene MCM7 at the protein level, as shown by Western blot. (H) Growth rate in parental, control, and KO\#1 and KO\#2 clones. Shown is the mean \pm s.d. of the doubling time calculated across 12 continuous culture days. (I) Morphology of parental, control, and KO\#1 and KO\#2 after miR-93 knockout.

Supplementary Figure 14

C

Supplementary Figure 14. Technical validation of AGO2-immunoprecipitation. (A) Western blot analysis of all isolated fractions during the IP procedure, including input, flow-through (FT), and immunoprecipitated (IP). IP was performed on four JURKAT clones (i.e., parental, CRISPR/Cas Control, miR-93 KO\#1, and KO\#2) in duplicate using either anti-AGO2 or nonspecific IgG antibody control. A representative blot is shown. (B) Principal component analysis shows the separation of input (turquois) and IP (red) fractions in the first dimension and the separation of anti-AGO2 (blue) and antilgG (yellow) mediated pulldown in the second dimension. Dimension three separates the two miR-93 knockouts from CRISPR control and parental samples (data not shown). (C) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction (two dimensions) of the miR-93-5p AGO2-Immunoprecipitation Targetome Pathways. The top 10 pathways are outlined in bold circles.

Supplementary Figure 15

Supplementary Figure 15. Upstream regulation of miR-93-5p. (A) MCM7 mRNA expression levels in JURKAT shControl and in shSTAT1_A and shSTAT1_B. (B) miR-25-3p and (C) miR-106b-5p expression level in JURKAT shControl and in shSTAT1_A and shSTAT1_B. (D) STAT1 levels in WBC upon sepsis induction in the S. aureus baboon model. (E) STAT1 levels in WBC upon sepsis induction in the E. coli baboon model.

Supplementary Figure 16. miR-93-5p target genes in the myeloid lineage (NB4). (A) RT-qPCR measurement of miR-93-5p levels in JURKAT and two cell lines of the myeloid lineage, NB4 and THP1. (B) PCR analysis of multiple CRISPR/Cas9-created clones showing unaffected and homozygous knockouts. Clones shown in red were used for further analysis. (C) The sequence of hsa-miR-93 indicated with mature $-3 p$ and $-5 p$ sequences (bold, underscored), the location of sgRNAs (yellow), and PAM sequences (blue). Sequencing results of NB4 parental cells and three clones - one unaffected control and two homozygous knockouts are shown. A 24-bp deletion encompassing the miRNA loop region is observed in both KO clones. (D) The more prevalently expressed arm of each miRNA was assessed, showing almost absent expression of miR-93-5p in both KO clones while neighboring miR-25-3p and miR-106b-5p show a slight up-regulation. (E) The knockout does not affect the levels of the miRNA host gene MCM7 at the protein level, as shown by Western blot. (F) 36 expressed genes with immune functions that were identified in the JURKAT AGO2-IP and are validated (red) or predicted (black) targets of miR-93-5p were assessed in NB4 miR-93 knockouts compared to controls by RTqPCR. Bars indicate fold changes in gene expression in the KO\#1 and KO\#2 samples relative to the control (control = 1).
Supplementary Figure 17
A

B \qquad Dysregulated miR-93-5p target genes in S. aureus

Supplementary Figure 17. Downregulated genes upon sepsis induction in either the E. colimediated baboon model or the S. aureus-mediated baboon model. (A) Downregulation of STAT3, CDK9, TANK, BAX, CD4, and CXCR4 upon sepsis induction in the E. coli-mediated baboon model. * Q-value <0.05. (B) Downregulation of PDGFA, SOS1, and IL16 upon sepsis induction in the S. aureus baboon model. Moderate t test; * Q-value <0.05, ${ }^{* * * *} \mathrm{Q}<0.0001$. Results were also adjusted to the subject effects using the linear mixed effects model (LMM), and significant P values after adjustment for multiple testing are marked in blue color.

Supplementary Table S1. Characteristics of cohort \#1 sepsis patients ($n=23$) included in the study.

ID	Tissue	Age	Cancer type	Treatment
$\mathbf{1 3}$	whole blood	65	Acute Myeloid Leukemia	Targeted
$\mathbf{2 0}$	whole blood	72	Acute Myeloid Leukemia	Cytotoxic
$\mathbf{2 1}$	whole blood	46	Chronic Myeloid Leukemia	Targeted; Cytotoxic
$\mathbf{2 3}$	whole blood	62	Multiple Myeloma	Cytotoxic
$\mathbf{2 6}$	whole blood	32	Leukemia	Targeted; Cytotoxic
$\mathbf{4 2}$	whole blood	57	Non-Small Cell Lung Cancer	Radiotherapy; Immunotherapy
$\mathbf{4 3}$	whole blood	62	Appendix Adenocarcinoma	Surgery; HIPEC
$\mathbf{4 4}$	whole blood	74	Multiple Myeloma	Targeted
$\mathbf{4 7}$	whole blood	51	Acute Myeloid Leukemia	Targeted; Cytotoxic
$\mathbf{4 8}$	whole blood	75	Melanoma	Radiotherapy
$\mathbf{5 0}$	whole blood	26	B Cell Acute Lymphoblastic Leukemia	Targeted; Cytotoxic
$\mathbf{5 2}$	whole blood	67	Multiple Myeloma	Cytotoxic
$\mathbf{5 8}$	whole blood	63	Acute Myeloid Leukemia	Cytotoxic
$\mathbf{5 9}$	whole blood	60	Prostate Cancer	None
$\mathbf{6 1}$	whole blood	42	Chronic myeloid Leukemia	None
$\mathbf{6 5}$	whole blood	51	Squamous cell carcinoma of base of tongue	None
$\mathbf{7 1}$	whole blood	88	Diffuse Large B Cell Lymphoma	None
$\mathbf{8 0}$	whole blood	52	Acute Myeloid Leukemia	None
$\mathbf{9 8}$	whole blood	51	Non-small Cell Lung Carcinoma	None
$\mathbf{1 2 0}$	whole blood	82	Lymphoma	None
$\mathbf{1 6 8}$	whole blood	59	Acute Myeloid Leukemia	None
$\mathbf{1 7 3}$	whole blood	47	Acute Myeloid Leukemia	
$\mathbf{1 7 5}$	whole blood	69	Myelodysplastic syndrome	
				None

Supplementary Table S2. Characteristics of cohort \#2 sepsis patients $(n=63)$ included in the study.

Patient ID	PBMC	Plasma	Age	APACHE II Final	SOFA	MEDS	SOPED	CRP	ANC	ALC	CCI
SC3	yes	yes	45	16	5	5	12	N/A	N/A	N/A	8
SC4	yes	yes	68	14	1	6	16	11.28	16.38	1.01	9
SC5	yes	yes	30	7	5	3	0	N/A	1.25	0.29	2
SC6	yes	yes	55	11	3	3	5	145.12	8.35	0.16	6
SC7	yes	yes	72	19	5	8	4	N/A	0.32	0.44	4
SC8	yes	yes	50	9	4	0	0	N/A	1.76	1.68	2
SC9	yes	yes	67	17	0	5	9	N/A	17.93	1.33	8
SC10	yes	yes	47	2	3	0	5	N/A	9.96	1.73	10
SC11	yes	yes	64	16	5	2	21	N/A	17.38	2.49	7
SC12	yes	N/A	71	11	6	5	4	N/A	93.5	2.8	2
SC13	yes	yes	55	8	2	3	0	168.41	5.25	0.07	2
SC14	yes	yes	67	14	8	6	4	N/A	N/A	N/A	5
SC15	N/A	N/A	57	12	8	9	0	192.53	N/A	N/A	4
SC16	yes	yes	58	8	5	3	5	N/A	4	0.12	7
SC17	yes	yes	59	9	3	0	0	N/A	2.06	0.68	4
SC18	yes	yes	40	7	4	0	0	N/A	6.43	0.15	2
SC19	yes	yes	45	7	2	2	9	N/A	7.13	0.55	6
SC20	yes	yes	20	3	1	2	9	N/A	4.48	0.96	6
SC21	yes	yes	35	6	3	2	16	206.41	8.79	0.19	6
SC22	yes	yes	71	14	6	9	4	90.34	N/A	N/A	5
SC23	yes	yes	63	10	0	0	5	N/A	21.6	1.35	7
SC24	yes	yes	50	11	7	3	0	N/A	N/A	N/A	4
SC25	yes	yes	64	11	7	3	5	N/A	18.57	2.01	7
SC26	yes	yes	37	13	7	3	7	N/A	0.31	3.43	4
SC27	yes	yes	29	6	4	6	7	N/A	1.67	1.44	2
SC28	yes	yes	66	9	4	10	9	N/A	10.42	0.69	6
SC29	yes	yes	56	9	5	3	5	195.34	0.01	0.33	6
SC30	yes	yes	28	11	6	3	0	72.62	N/A	N/A	2
SC31	yes	yes	56	6	4	0	7	N/A	14.92	2.74	2
SC32	yes	yes	57	8	1	3	5	9.76	5.65	0.06	12
SC33	yes	yes	81	8	5	3	11	115.11	11.34	0.53	3
SC34	yes	yes	70	11	5	3	11	N/A	9.88	4.92	4
SC35	yes	yes	27	7	8	3	0	N/A	0	0.5	2
SC36	yes	yes	62	10	7	3	0	N/A	N/A	N/A	2

SC37	yes	yes	44	9	3	0	7	$\mathrm{~N} / \mathrm{A}$	13.54	1.12	13
SC38	yes	yes	70	15	6	8	4	54.62	0.5	0.1	4
SC39	yes	yes	22	12	7	3	0	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	2
SC40	N/A	yes	29	9	7	3	0	285	$\mathrm{~N} / \mathrm{A}$	N / A	2
SC41	yes	yes	74	21	6	5	13	$\mathrm{~N} / \mathrm{A}$	21.74	0.46	6
SC43	yes	yes	48	4	3	0	0	141.51	6.9	1.09	6
SC44	N/A	yes	44	8	6	3	5	172.51	0.4	0.42	5
SC45	N/A	N/A	57	13	9	6	0	$\mathrm{~N} / \mathrm{A}$	0.01	0.91	2
SC46	yes	yes	28	13	7	3	0	90.55	$\mathrm{~N} / \mathrm{A}$	N / A	6
SC47	yes	yes	64	7	2	11	16	187.31	27.5	0.86	5
SC48	N/A	yes	63	10	7	6	7	199.11	0	0.3	6
SC49	yes	yes	50	5	4	3	5	7.39	3.1	0.12	2
SC50	yes	yes	64	16	7	3	0	$\mathrm{~N} / \mathrm{A}$	0.55	0.02	6
SC51	yes	yes	60	9	1	0	5	45.27	1.85	0.16	2
SC52	yes	yes	41	5	3	0	5	$\mathrm{~N} / \mathrm{A}$	14.19	1.74	2
SC53	yes	yes	62	12	9	10	11	$\mathrm{~N} / \mathrm{A}$	1.23	2.09	2
SC54	yes	yes	22	18	6	8	14	269.23	19.63	15.95	7
SC55	yes	yes	75	10	4	10	22	$\mathrm{~N} / \mathrm{A}$	2.44	2.91	2
SC56	yes	yes	29	7	2	3	0	$\mathrm{~N} / \mathrm{A}$	2.19	0.63	2
SC57	yes	N/A	24	6	1	5	11	85.34	8.85	1.16	2
SC58	yes	yes	46	11	6	3	0	N/A	N/A	N/A	6
SC59	yes	yes	49	11	9	5	5	172.59	N/A	N/A	6
SC60	yes	yes	53	4	4	3	5	N/A	12.21	0.1	6
SC61	yes	yes	43	9	4	8	16	N/A	24.78	1.75	2
SC62	yes	yes	74	18	7	8	8	114.08	1.2	0.11	9
SC63	yes	yes	71	11	6	11	20	85.16	1.56	0.36	4
SC64	yes	yes	61	10	6	3	0	N/A	2.59	0.62	5
SC65	yes	yes	51	21	10	6	7	234.26	2.45	0.11	2
SC66	yes	yes	33	10	6	8	11	N/A	0	3.18	N/A

Supplementary Table S3. 583 putative miR-93 target genes

Probe	Gene Symbol	Primary identifyer	FC IP WT vs IP miR- 93 KO	P-val_IP	FDR P-val_IP	FC IP Control vs IP miR93 KO	P-val_IP	FDR P-val_IP	miR-93-5p target (predicted, miRwalk)	miR-93-5p target (confirmed, miRTarBase)
TC1400007033	FAM179B	NM_001308120	13.85	<0.0001	<0.0001	3.2	0.0079	0.0592	0	
TC1400010195	WARS	NM_004184	7.82	0.0022	0.0179				1	
TC2200008409	ZMAT5	NM_001003692	7.76	0.0007	0.0075				1	
TC0300012170	GOLGB1	NM_001256486	7.68	0.0022	0.0178				1	
TC0X00010982	CDR1	NM_004065	5.76	<0.0001	0.001				0	
TC0X00010465	NUP62CL	NM_017681	5.72	<0.0001	0.0001	7.65	<0.0001	<0.0001	0	
TC0800010285	SLC20A2	NM_001257180	5.64	<0.0001	0.0001				1	
TC1400006529	ANG; RNASE4	NM_001097577	5.04	0.0009	0.0089	3.86	0.0042	0.0378	0	
TC0200015002	CHN1	NM_001025201	5.01	0.0003	0.0041	2.55	0.0235	0.1256	1	
TC0800012396	FBXO16	NM_001258211	4.85	0.0018	0.0152				0	
TC0100011873	RNF187	NM_001010858	4.73	0.0047	0.0318				0	
TC0200015976	SP110	NM_001185015	4.68	0.0015	0.0131				1	
TC0800008145	WWP1	NM_007013	4.62	0.0031	0.0234				1	
TC1600010593	CMTM4	NM_178818	4.56	0.0002	0.0031				1	
TC0700013022	ACTR3C	NM_001164458	4.54	0.0044	0.0302				0	
TC1800008734	STARD6	NM_139171	4.49	0.0017	0.0147				0	
TC1500007545	SNX1	NM_001242933	4.48	0.0022	0.0182				1	
TC2100008536	PCBP3	NM_001130141	4.45	0.0001	0.0019	2.58	0.0081	0.0601	1	
TC0500012791	KCNMB1	NM_004137	4.44	<0.0001	0.0006				1	MIRT518695
TC0100013123	UBR4	NM_020765	4.41	0.0017	0.0147				1	
TC0700006737	ARL4A	NM_001037164	4.36	0.001	0.01				1	
TC0200010216	ITGAV	NM_001144999	4.29	0.0083	0.048				1	
TC1900011684	BABAM1	NM_001033549	4.22	0.006	0.0377				1	
TC1100011398	MRGPRD	NM_198923	4.19	0.0004	0.0047				1	
TC1100012303	PPP2R1B	NM_001177562	4.11	0.0003	0.0042	2.22	0.0276	0.1396	1	
TC0300006471	SETMAR	NM_001243723	4.11	0.0022	0.0182				0	
TC0100009418	RAP1A	NM_001010935	4.1	0.0019	0.0161				1	

May 2023

TC1200009881	CLEC2B	NM_005127	4.08	0.008	0.0469				1	
TC0900011453	ZBTB6	NM_006626	4.05	0.0004	0.0051				1	MIRT72679
TC0500013186	PTCD2	NM_001284403	3.97	0.0141	0.0703				1	
TC0100010525	SFT2D2	NM_199344	3.93	0.0001	0.0019				1	
TC0100008190	CMPK1	NM_001136140	3.91	0.0046	0.0311				0	
TC1600008156	LRRC36	NM_001161575	3.88	0.0008	0.008				1	
TC1900011873	ZNF433	NM_001080411	3.87	0.0154	0.0746	-3.24	0.0329	0.1562	0	
TC0200014550	ORC4	NM_001190879	3.85	<0.0001	0.0014				1	
TC1200009967	DUSP16	NM_030640	3.82	0.0006	0.0061				1	
TC0600012652	FAXC	NM_032511	3.75	0.0122	0.063				1	MIRT615447
TC0300013336	LAMP3	NM_014398	3.74	<0.0001	0.0006	2.41	0.0023	0.0237	1	
TC0900009905	CNTFR	NM_001207011	3.72	0.0009	0.0088				1	
TC0800008241	TMEM67	NM_001142301	3.69	0.0023	0.0187				1	MIRT726282
TC0200013610	REV1	NM_001037872	3.66	0.0002	0.0031				1	MIRT296869
TC0200016471	MXD1	NM_001202513	3.62	0.0082	0.0477				1	MIRT437749
TC1700010721	STAT3	NM_003150	3.61	0.0129	0.0656				1	MIRT28178
TC1100007787	CD6	NM_001254750	3.59	0.0001	0.0021				1	
TC1500008983	SLC12A6	NM_001042494	3.57	0.0039	0.0275				1	MIRT782765
TC1100008392	PLEKHB1	NM_001130033	3.55	0.0013	0.0122				0	
TC0300011032	NCKIPSD	NM_016453	3.53	0.001	0.0095	2.21	0.0267	0.1367	1	
TC1200011936	ATXN2	NM_001310121	3.51	0.0089	0.0508				1	
TC1400010765	RDH11	NM_001252650	3.51	0.0009	0.0088				1	
TC0600007303	BTN3A1	NM_001145008	3.49	0.0002	0.0027				1	MIRT168279
TC1000009240	EDRF1	NM_001202438	3.49	0.0022	0.0179				1	
TC0100010365	FCRLA	NM_001184866	3.46	0.0006	0.0069				1	
TC0100008621	LEPR; LEPROT	NM_001003679	3.45	0.0216	0.0941				0	
TC0800012454	ZHX1	NM_001017926	3.44	0.0007	0.0072				1	
TC1700012216	LGALS9	NM_002308	3.43	0.0054	0.035	2.83	0.0164	0.0968	0	
TC1900010962	MYPOP	NM_001012643	3.4	0.0013	0.0123	2.61	0.0091	0.065	0	
TC0400009855	TMEM128	NM_001297551	3.4	0.0025	0.0197				1	
TC1500007975	IREB2	NM_004136	3.4	0.0114	0.0605				1	

May 2023

TC1900008172	ZNF574	NM_022752	3.37	0.0059	0.0372				1	
TC1000011501	TCTN3	NM_001143973	3.35	0.0011	0.0109	2.55	0.0087	0.0631	1	
TC0700010170	RNF216	NM_207111	3.34	0.0166	0.0783				1	MIRT726727
TC0800011249	RNF19A	NM_001280539	3.32	0.0275	0.1105				1	
TC0900010878	FANCC	NM_000136	3.31	0.0065	0.0401				1	
TC1200012083	FBXO21	NM_015002	3.31	0.0076	0.0452				1	MIRT727672
TC1700010802	MPP2	NM_001278370	3.29	0.0119	0.0624				1	
TC1500007365	LIPC	NM_000236	3.28	0.0015	0.0132				0	
TC0700013429	PILRA	NM_013439	3.26	0.0003	0.0033				1	
TC1700006500	TUSC5	NM_172367	3.25	0.0059	0.0373				1	
TC0600013054	SERINC1	NM_020755	3.22	0.0045	0.0306	2.4	0.0272	0.1383	1	MIRT686992
TC1800007829	HSBP1L1	NM_001136180	3.21	0.0019	0.0158				1	
TC1900010801	CNFN	NM_032488	3.2	0.0012	0.0114				1	
TC2000010022	ZNFX1	NM_021035	3.19	0.0007	0.0072	2.96	0.0013	0.0156	1	MIRT48879
TC0100016260	ALDH9A1	NM_000696	3.18	0.0077	0.0455				1	MIRT728362
TC0700010621	FKBP14	NM_017946	3.18	0.0036	0.0257				1	MIRT688229
TC0X00011406	CXorf40B	NM_001013845	3.18	0.0137	0.0687				1	
TC0600009843	PLEKHG1	NM_001029884	3.17	0.0112	0.0597				1	
TC1100010077	SBF2	NM_030962	3.17	0.0002	0.0029				1	
TC0300014048	NPHP3ACAD11	NR_037804	3.16	0.0007	0.0072				0	
TC0X00006614	MSL3	NM_001193270	3.16	0.0213	0.0931				1	
TC1900007900	$\begin{aligned} & \text { LOC101927572 } \\ & \text {; AC002116.7; } \\ & \text { CLIP3 } \end{aligned}$	NM_001290056	3.16	0.003	0.0227				0	
TC0100017446	SUSD4	NM_001037175	3.15	0.0018	0.0157				1	
TC1000006858	HSPA14	NM_001278205	3.15	0.0091	0.0513				1	
TC1400009351	SIX1	NM_005982	3.13	0.002	0.0168				1	
TC2200009274	APOBEC3G	NM_021822	3.11	0.0028	0.0217	2.12	0.0384	0.1725	1	
TC0600009808	PCMT1	NM_001252049	3.09	0.0008	0.0086				1	
TC1200007461	PCED1B	NM_001281429	3.07	0.0001	0.002				1	
TC0300008142	TBC1D23	NM_001199198	3.06	0.0113	0.0601				1	
TC1100007943	PLCB3	NM_000932	3.06	0.0014	0.0129				1	

TC1700010328	UTP6	NM_018428	3.06	0.0008	0.0084				0	
TC0600007092	FAM8A1	NM_016255	3.05	0.0001	0.0016				0	
TC0X00009650	WDR45; PRAF2	NM_001029896	3.05	0.0043	0.0295				0	
TC0300008559	PARP15	NM_001113523	3.04	0.0226	0.0968				1	
TC1300007565	SLAIN1	NM_001040153	3.04	0.0092	0.052				1	
TC1400007691	DLST	NM_001244883	3.04	0.0135	0.0677				1	
TC0200016768	PECR	NM_018441	3.02	0.0181	0.0831				1	
TC1700008820	C17orf80	NM_001100621	3.02	0.0046	0.0311				1	
TC0900011021	TEX10	NM_001161584	3.01	0.0181	0.0833				1	
TC1600010347	RPGRIP1L	NM_001127897	3.01	0.0037	0.0263				1	
TC1500009355	SHC4	NM_203349	3	0.0121	0.0628				1	
TC0100009929	SETDB1	NM_001145415	2.99	0.0141	0.0702				1	
TC1600009986	LOC730183; RP11146F11.1; hitema	NM_001256932	2.98	0.0004	0.0046				0	
TC09000009846	B4GALT1	NM_001497	2.97	0.0003	0.0041	2.97	0.0003	0.0055	1	
TC0900007488	PIP5K1B	NM_001278253	2.97	0.0015	0.0131				1	
TC0700009394	AGK	NM_018238	2.96	0.0167	0.0785				1	
TC1100013129	CTSD	NM_001909	2.95	0.0044	0.03	2.07	0.0459	0.1923	0	
TC1500007874	C15orf39	NM_015492	2.93	0.0017	0.0148	2.44	0.0072	0.0558	1	
TC0900010922	ZNF510	NM_014930	2.93	0.0123	0.0633				1	
TC1400009617	DPF3	NM_001280542	2.93	0.0256	0.1056				1	
TC0300009179	MED12L	NM_053002	2.92	0.0149	0.0728	2.45	0.0387	0.1731	1	MIRT28147
TC0100015082	DPH5	NM_001077394	2.9	0.0041	0.0287	3.89	0.0005	0.0071	1	
TC0400012967	MGARP	NM_032623	2.9	0.0093	0.0521				0	
TC0300007013	ARPP21	NM_001025068	2.89	0.0096	0.0533				1	
TC0400008213	RAP1GDS1	NM_001100426	2.87	0.0131	0.0663				1	
TC1900007570	ZNF492	NM_020855	2.84	0.0012	0.0116	2.34	0.0065	0.0519	1	
TC0700011318	ERV3-1; ZNF117	NM_001007253	2.84	0.0125	0.0644				0	
TC2000009673	SYCP2	NM_014258	2.83	0.0167	0.0786	-2.78	0.0181	0.1037	1	
TC1200012730	PXMP2	NM_018663	2.83	0.0407	0.1444				0	

TC0300013751	BDH1	NM_004051	2.82	0.0296	0.1162	2.89	0.0261	0.1348	1	
TC1900011724	$\begin{aligned} & \text { ZNF540; } \\ & \text { ZNF571-AS1 } \end{aligned}$	NM_001172225	2.82	0.026	0.1067				0	
TC1100009611	JAM3	NM_001205329	2.81	0.0294	0.1156				1	
TC1200007061	CMAS	NM_018686	2.8	0.0032	0.0236	2.39	0.0106	0.0726	0	
TC1900008533	CD37	NM_001040031	2.8	0.0029	0.0221				1	
TC1400008764	GZMB	NM_004131	2.79	0.0003	0.0035	1.77	0.0271	0.1378	1	
TC0100007481	PIGV	NM_001202554	2.79	0.0071	0.043				1	
TC0200011276	FAM132B	NM_001291832	2.78	0.0072	0.0433				0	
TC0300007387	RNF123	NM_022064	2.78	0.0078	0.0458				1	
TC2100008424	SLC19A1	NM_001205206	2.77	0.0194	0.0875				1	MIRT48799
TC0900011252	FKBP15	NM_015258	2.76	0.035	0.1306				1	
TC1300008926	KPNA3	NM_002267	2.76	0.0107	0.0578				1	
TC1700008844	TTYH2	NM_032646	2.76	0.0014	0.0131				1	
TC1100007400	TSPAN18	NM_130783	2.75	0.0047	0.0316				1	
TC0300011154	POC1A	NM_001161580	2.74	0.0338	0.1275	4.26	0.0034	0.0329	0	
TC0300007206	TCAIM	NM_001029839	2.72	0.0007	0.0078				1	
TC1400009002	SEC23A	NM_006364	2.72	0.0031	0.0231				0	
TC2200007894	CECR1	NM_001282225	2.71	0.0106	0.0572				0	
TC1600009412	TXNDC11	NM_001303447	2.69	0.0175	0.0814	2.26	0.0457	0.192	1	
TC1200012745	C1RL	NM_001297640	2.69	0.0429	0.1493				1	
TC0600007196	MRS2	NM_001286264	2.68	0.0042	0.0293				0	
TC1000010367	ZNF25	NM_145011	2.68	0.0201	0.0898				0	
TC0100018081	ZNF670; ZNF695; ZNF670- ZNF695	NM_001204220	2.67	0.0023	0.0184				0	
TC1000011679	CUEDC2	NM_024040	2.66	0.0442	0.1523				1	
TC1200012808	R3HDM2	NM_014925	2.65	0.0108	0.0584				1	
TC1600008193	PRMT7	NM_001184824	2.65	0.0102	0.056				1	
TC0100016290	TADA1	NM_053053	2.64	0.0171	0.0798	2.4	0.0298	0.1472	1	
TC1800008338	KCTD1	NM_001136205	2.64	0.0094	0.0526				0	
TC1100010551	TRAF6	NM_004620	2.63	0.0277	0.1109	2.94	0.0149	0.091	1	

May 2023

TCOY00006476	CD99	$\begin{aligned} & \text { NM_001122898_ } \\ & 2 \end{aligned}$	2.63	0.0096	0.0534				1	
TC1900007945	ZNF529-AS1	NR_110703	2.63	0.0064	0.0396				0	
TC2200009257	TCN2	NM_000355	2.63	0.0008	0.0079				1	
TC1200012657	CAND1	NM_018448	2.62	0.0152	0.0739				1	
TC1700006719	RNASEK; C17orf49; RNASEKC17orf49	NM_001004333	2.62	0.016	0.0763				0	
TC0800012132	ZC3H3	NM_015117	2.61	0.0242	0.1014	3.17	0.0079	0.0592	1	
TC0900011793	MED27	NM_001253881	2.61	0.0103	0.0561	2.25	0.0272	0.1382	1	
TC1200007954	USP15; MIR6125	NM_001252078	2.6	0.0438	0.1516				0	
TC2000007945	C20orf197	NM_001302813	2.6	0.0016	0.0141				0	
TC0500006816	FAM105A	NM_019018	2.59	0.0101	0.0555				1	
TC0600010609	PXDC1	NM_183373	2.59	0.0222	0.0957				1	
TC2200007150	TIMP3	NM_000362	2.55	0.0016	0.014	-1.88	0.0246	0.1297	0	
TC1900010886	ZNF235	NM_004234	2.55	0.0031	0.0232				0	
TC0500013351	FNIP1	NM_001008738	2.54	0.0135	0.068	2.54	0.0137	0.086	1	
TC0300008919	SLC35G2	NM_001097599	2.54	0.0121	0.0628	2.36	0.0196	0.11	1	
TC1400008637	SALL2	NM_001291446	2.54	0.0052	0.0343				1	
TC1800008679	MBD1	NM_001204136	2.54	0.0028	0.0215				1	
TC1700009669	ALOX12B	NM_001139	2.52	0.0095	0.0527				1	
TC0600014045	PDCD2	NM_001199461	2.51	0.0068	0.0414	2.36	0.0107	0.0732	1	
TC1900011743	TMEM91	NM_001042595	2.51	0.0087	0.0495				0	
TC0800012026	SLC45A4	NM_001080431	2.5	0.0154	0.0745	2.46	0.0169	0.099	1	
TC0200013531	KANSL3	NM_001115016	2.5	0.0042	0.0293				1	
TC0700010581	HIBADH	NM_152740	2.49	0.0201	0.0898	2.56	0.0171	0.0996	1	
TC0400011815	MFSD8	NM_152778	2.49	0.012	0.0624				1	MIRT54637
TC0700010321	ETV1	NM_001163147	2.49	0.0066	0.0404				1	
TC1900011305	ZNF83	NM_001105549	2.49	0.0031	0.0231				0	
TC0200009700	GALNT13	NM_001301627	2.48	0.0293	0.1154				1	
TC0200012307	SOS1	NM_005633	2.48	0.01	0.0549				1	
TC0200014189	POLR2D	NM_004805	2.48	0.0019	0.0159				0	

May 2023

TC1100011014	SLC15A3	NM_016582	2.48	0.0022	0.018				1	
TC1700010019	MFAP4	NM_001198695	2.48	0.0415	0.1464				0	
TC1200010562	COL2A1	NM_001844	2.47	0.0033	0.024				1	
TC1700006946	HS3ST3B1	NM_006041	2.47	0.009	0.0511				1	
TC2000010010	BLCAP	NM_001167820	2.47	0.0184	0.0845				1	
TC0600011235	HIST1H2AM; HIST1H3J	NM_003514	2.46	0.0052	0.034				0	
TC0600013458	EPM2A	NM_001018041	2.45	0.0267	0.1084	2.45	0.0269	0.1373	1	
TC0X00006477	CD99	NM_001122898	2.45	0.0162	0.0771				1	
TC1100006656	OR52K2	NM_001005172	2.45	0.0165	0.0779				1	
TC1600007723	GPT2	NM_001142466	2.45	0.0153	0.0742				1	
TC0300013471	BCL6	NM_001130845	2.44	0.0343	0.129	2.53	0.0286	0.1427	1	
TC0400006433	ZNF595	NM_001286052	2.44	0.0052	0.034				0	
TC1000008385	STAMBPL1	NM_020799	2.44	0.0314	0.1212				1	
TC1500007379	FAM63B	NM_001040450	2.44	0.0212	0.0929				0	
TC0200011362	RNPEPL1	NM_018226	2.43	0.0117	0.0614	3	0.0025	0.0254	1	
TC0200007401	DYNC2LI1	NM_001193464	2.43	0.0383	0.1389				1	
TC0500010580	PRKAA1	NM_006251	2.43	0.0254	0.1048				1	
TC0700013594	TRIM4	NM_033017	2.43	0.0275	0.1106				1	
TC0X00007134	USP11	NM_004651	2.43	0.0391	0.1409				0	
TC1700009613	ASGR2	NM_001181	2.43	0.0058	0.0369				1	
TC0400009892	CRMP1	NM_001014809	2.41	0.0111	0.0595				1	
TC0600007006	RNF182	NM_001165032	2.41	0.0067	0.041				1	
TC0700010504	OSBPL3	NM_015550	2.41	0.0427	0.1491				1	
TC1000008668	SFXN3	NM_030971	2.41	0.0212	0.0929				1	
TC1100011192	ATG2A	NM_015104	2.41	0.0136	0.0683				1	MIRT728285
TC1200008942	PLBD2	NM_001159727	2.41	0.0246	0.1029				0	
TC0100012529	PEX10	NM_002617	2.38	0.0057	0.0364	-2.32	0.0069	0.0542	0	
TC1900008750	ZNF761; TPM3P9	NM_001008401	2.38	0.0351	0.131				0	
TC0100015786	POGZ	NM_001194937	2.37	0.0186	0.0848				1	
TC1100012165	CASP4	NM_001225	2.36	0.023	0.098	2.76	0.0083	0.0612	1	

TC1100012722	CDON	NM_001243597	2.36	0.024	0.1007	2.32	0.0267	0.1367	1	
TC0100008139	MAST2	NM_015112	2.36	0.0049	0.0328				1	
TC0300008550	CSTA	NM_005213	2.36	0.0318	0.1221				0	
TC0400008119	TIGD2	NM_145715	2.36	0.0175	0.0812				1	
TC0500010759	CCNO	NM_021147	2.36	0.0093	0.0522				0	
TC1700012100	CSNK1D	NM_001893	2.36	0.0086	0.0491				1	
TC1700006735	SLC2A4	NM_001042	2.35	0.0072	0.0432	1.86	0.0423	0.1829	1	MIRT5385
TC0700009606	ZNF282	NM_001303481	2.35	0.0382	0.1388				1	
TC1500010184	BCL2A1	NM_001114735	2.35	0.023	0.0981				1	
TC0400006951	CD38	NM_001775	2.34	0.0128	0.0655				1	
TC1300008511	KATNAL1	NM_001014380	2.34	0.0076	0.0451				1	MIRT27967
TC0200008556	ZAP70	NM_001079	2.33	0.0185	0.0845				1	
TC0700009093	SMKR1	NM_001195243	2.33	0.006	0.0378				1	
TC0X00007744	SH3BGRL	NM_003022	2.33	0.0008	0.0079				1	
TC1000008447	TNKS2	NM_025235	2.33	0.0382	0.1388				1	MIRT57385
TC2100008487	TPTE	NM_001290224	2.33	0.0103	0.0561				1	
TC1100006456	PKP3	NM_001303029	2.32	0.0025	0.0195				1	
TC1700007603	RASL10B	NM_033315	2.32	0.0264	0.1078				1	
TC1700007769	LRRC3C	NM_001195545	2.32	0.0073	0.044				0	
TC0200014509	GTDC1	NM_001006636	2.31	0.0268	0.1088				0	
TC0X00010401	NXF3	NM_022052	2.31	0.0209	0.092				0	
TC1000007061	GPR158	NM_020752	2.31	0.0016	0.0143				1	
TC1100008333	LRTOMT	NM_001145307	2.29	0.0125	0.0643				1	
TC1500010400	PEX11A	NM_001271572	2.29	0.0207	0.0915				1	
TC0900009461	PLGRKT	NM_018465	2.28	0.0037	0.0266				0	
TC0200010523	CD28	NM_001243077	2.27	0.0132	0.0668				1	MIRT684931
TC0600013341	GVQW2	NM_001242740	2.27	0.0127	0.065				0	
TC0700008878	CAPZA2	NM_006136	2.27	0.0356	0.1323				0	
TC1000012391	TUBGCP2	NM_001256617	2.27	0.0211	0.0927				1	
TC0300014086	ATP13A4	NM_032279	2.26	0.006	0.0375				1	
TC0500013296	C1QTNF3AMACR	NR_037951	2.26	0.0165	0.0779				0	

May 2023

TC1000010699	IPMK	NM_152230	2.26	0.0233	0.099				1	
TC1500009804	DENND4A	NM_001144823	2.26	0.022	0.0953				1	
TC0500011602	GIN1	NM_017676	2.24	0.043	0.1495	2.38	0.0307	0.1498	1	
TC0900012141	GCNT1	NM_001097633	2.24	0.0336	0.127				1	
TC1100007951	CCDC88B	NM_032251	2.24	0.0132	0.0666				1	
TC1600010648	ENKD1	NM_032140	2.24	0.0288	0.1139				0	
TC1800007859	TYMSOS	NM_001012716	2.24	0.011	0.0589				0	
TC0300011077	IP6K1	NM_001006115	2.23	0.0029	0.0219	2.87	0.0002	0.0037	1	MIRT48829
TC1100013109	GRAMD1B	NM_001286563	2.23	0.0463	0.1576	2.61	0.0192	0.1086	1	
TC0100014459	LINC01359	NR_119383	2.23	0.0222	0.0958				0	
TC0300010933	FYCO1	NM_024513	2.22	0.0261	0.1071				1	MIRT2813
TC0600011197	ZNF184	NM_007149	2.22	0.0044	0.03				0	
TC0200013595	MGAT4A	NM_001160154	2.21	0.0401	0.1431				1	
TC1500010093	ETFA	NM_000126	2.21	0.0164	0.0778				0	
TC1700009681	CTC1	NM_025099	2.21	0.0427	0.1491				1	MIRT48774
TC1900010074	GMIP	NM_001288998	2.2	0.0357	0.1324				1	
TC2200007313	TRIOBP; NOL12	NM_001039141	2.2	0.0172	0.0802				0	
TC0X00008026	H2BFM	NM_001164416	2.18	0.0364	0.1342				1	
TC1100008979	CUL5	NM_003478	2.18	0.0059	0.0374				1	
TC1700007419	TAOK1; MIR4523	NM_020791	2.18	0.0221	0.0955				0	
TC0100006699	THAP3	NM_001195752	2.17	0.0272	0.1097	2.62	0.0075	0.057	1	
TC0400012891	NELFA; MIR943	NM_005663	2.17	0.0249	0.1036				0	
TC1900009590	ZNF561	NM_152289	2.17	0.0057	0.0363				1	
TC1900011207	JOSD2	NM_001270639	2.17	0.0086	0.0491				1	
TC2000008123	NRSN2-AS1	NR_109990	2.17	0.0173	0.0804				0	
TC0100009949	PSMD4	NM_002810	2.16	0.0327	0.1244	2.19	0.03	0.1479	1	MIRT4885
TC1700007571	ZNF830	NM_052857	2.16	0.0206	0.0913				1	
TC2100007460	MCM3AP-AS1	NR_002776	2.15	0.0359	0.133	2.81	0.006	0.0493	0	
TC1700006449	C17orf97	NM_001013672	2.15	0.0117	0.0614				0	
TC2200008495	C22orf24	NM_001302819	2.15	0.0391	0.1409				0	

TC1100006440	RIC8A; MIR6743	NM_001286134	2.14	0.0422	0.1479	3.35	0.0022	0.0237	0	
TC0300013896	MFSD1	NM_001167903	2.14	0.0169	0.0794	2.55	0.0042	0.0379	1	
TC0200016626	MBOAT2	NM_138799	2.14	0.02	0.0896	2.21	0.0159	0.095	1	
TC0100012376	ZNF672	NM_024836	2.14	0.0345	0.1295				1	
TC0600007613	HSPA1A; HSPA1B	NM_005345	2.14	0.0143	0.0706				0	
TC0100015950	FAM189B	NM_001267608	2.13	0.0172	0.0803				1	
TC1100007394	CD82	NM_001024844	2.13	0.0115	0.0608				1	
TC1500009370	FAM227B	NM_152647	2.13	0.0276	0.1107				1	
TC1700012482	SIRT7	NM_016538	2.13	0.0355	0.132				1	
TC2200009164	SYCE3	NM_001123225	2.13	0.0376	0.1375				1	
TC0100009658	SRGAP2C	NM_001271872	2.12	0.0193	0.0873				1	
TC0100009899	C1orf54	NM_001301039	2.12	0.0192	0.0869				0	
TC0900007165	TRMT10B	NM_001286950	2.12	0.0186	0.0848				1	
TC0200016369	DTYMK	NM_001165031	2.11	0.0309	0.1199				1	
TC1100006492	PNPLA2	NM_020376	2.11	0.0121	0.0628				0	
TC0800008279	PLEKHF2	NM_024613	2.1	0.0253	0.1047	2.13	0.0229	0.1229	1	
TC0200007297	GEMIN6	NM_024775	2.1	0.0323	0.1235				0	
TC0700012636	PODXL	NM_001018111	2.1	0.0401	0.143				1	
TC1200012655	HELB	NM_033647	2.1	0.0309	0.1199				1	
TC1300008212	TUBA3C	NM_006001	2.1	0.027	0.1093				0	
TC2200007138	FBXO7	NM_001033024	2.1	0.0129	0.0658				1	
TC1100013138	RRP8	NM_015324	2.09	0.0275	0.1107	2.26	0.0157	0.0941	1	
TC0300010672	UBP1	NM_001128160	2.09	0.0181	0.0831				1	
TC1600010276	SNX20	NM_001144972	2.09	0.0316	0.1215				1	
TC1700011084	PPP1R9B	NM_032595	2.09	0.035	0.1306				0	
TC1900011282	ZNF614	NM_025040	2.09	0.0272	0.1098				0	
TC1900012023	ZNF836	NM_001102657	2.09	0.0425	0.1485				1	
TC0100009746	NUDT17	NM_001012758	2.08	0.0108	0.0582				0	
TC0200006476	SNTG2	NM_018968	2.08	0.0344	0.1291				1	
TC0X00010836	RAP2C	NM_001271186	2.08	0.0425	0.1485				1	MIRT546823

May 2023

TC1000008005	MCU	NM_001270679	2.08	0.02	0.0896				1	
TC1000011577	PYROXD2; MIR1287	NM_032709	2.07	0.0277	0.1111				0	
TC1200012737	ZNF268	NM_001165881	2.07	0.0332	0.1259				0	
TC0100012941	PRAMEF13	NM_001291380	2.06	0.0364	0.1342				0	
TC1700011418	LIMD2	NM_030576	2.06	0.0259	0.1066				1	
TC1400009777	POMT2	NM_013382	2.05	0.0346	0.1296	2.52	0.0081	0.0603	1	
TC0300011452	UBA3	NM_003968	2.05	0.0259	0.1065				1	
TC0400007542	KIT	NM_000222	2.05	0.0413	0.1458				1	
TC1200011108	WIF1	NM_007191	2.05	0.0377	0.1375				1	
TC1600007952	OGFOD1	NM_018233	2.05	0.0272	0.1098				1	
TC1600008159	HSD11B2	NM_000196	2.05	0.0218	0.0946				1	
TC1700006767	WRAP53	NM_001143990	2.05	0.0298	0.1167				1	
TC0X00009855	ZXDA	NM_007156	2.04	0.029	0.1146	2.25	0.0142	0.0881	1	
TC1000011287	GRID1	NM_017551	2.04	0.015	0.0731				1	
TC0100006989	DNAJC16	NM_001287811	2.03	0.0085	0.0488				1	
TC0200007591	ERLEC1	NM_001127397	2.03	0.0216	0.0941				0	
TC0500010639	CCL28	NM_001301873	2.03	0.0366	0.1348				1	
TC0200010796	CTDSP1	NM_001206878	2.02	0.0144	0.0711				1	
TC0300010209	TADA3	NM_001278270	2.02	0.0104	0.0567				0	
TC0600012175	KHDRBS2	NM_152688	2.02	0.0349	0.1304				0	
TC0900011980	SEC16A	NM_001276418	2.02	0.026	0.1066				1	MIRT48866
TC0900012175	CDK9	NM_001261	2.02	0.0152	0.0737				1	
TC1300009919	ATP4B	NM_000705	2.02	0.014	0.0696				1	
TC0300011276	DENND6A	NM_152678	2.01	0.0123	0.0635				1	
TC0500013300	C9	NM_001737	2.01	0.0409	0.1447				1	
TC2200008862	CYP2D6	NM_000106	2	0.0073	0.0436	-1.75	0.026	0.1347	1	
TC0100016350	CCDC181	NM_001300968	2	0.0418	0.1471				1	
TC0X00006656	RAB9A	NM_001195328	2	0.0387	0.14				1	
TC1700008331	HLF	NM_002126	2	0.0355	0.132				1	
TC0200009806	TANK	NM_001199135	1.99	0.0393	0.1412	-2.41	0.0102	0.0704	1	
TC1300006930	COG6	NM_001145079	1.99	0.0338	0.1275				1	

May 2023

TC0600008350	BAG2	NM_004282	1.98	0.0338	0.1277				0	
TC1200007622	ATF1	NM_005171	1.98	0.0404	0.1437				1	
TC1900012000	TEAD2	NM_001256658	1.98	0.0441	0.152				0	
TC1700006645	PLD2	NM_001243108	1.97	0.044	0.1517	2.78	0.0037	0.0346	1	
TC0700008094	ZP3	NM_001110354	1.97	0.0268	0.1088	2.31	0.0076	0.0578	0	
TC1700007913	RAMP2	NM_005854	1.97	0.0217	0.0944	2.04	0.0161	0.0957	1	
TC0100008078	ARTN	NM_001136215	1.97	0.0217	0.0944				1	
TC0500009594	CDHR2	NM_001171976	1.97	0.0216	0.0941				1	
TC1900011239	CTU1	NM_145232	1.97	0.0181	0.0833				0	
TC0200013019	MCEE	NM_032601	1.96	0.0368	0.1354				0	
TC1700012370	TBC1D28	NM_001039397	1.96	0.0318	0.1221				1	
TC0100018045	SMYD3	NM_001167740	1.95	0.0427	0.1491				1	
TC0300011378	THOC7	NM_001285387	1.95	0.0145	0.0716				0	
TC1100009827	OSBPL5	NM_001144063	1.95	0.0429	0.1494				1	
TC1400008688	C140rf93	NM_001130706	1.95	0.0436	0.151				1	
TC0100015943	DPM3	NM_018973	1.94	0.0133	0.0672				1	
TC0600011123	HIST1H4B	NM_003544	1.94	0.0308	0.1194				1	
TC0700013508	RADIL	NM_018059	1.94	0.0095	0.0528				1	
TC0400009936	GRPEL1	NM_025196	1.93	0.0223	0.096	2.6	0.0016	0.0181	1	
TC0100012950	LRRC38	NM_001010847	1.93	0.0293	0.1153				0	
TC0500009649	RMND5B	NM_001288794	1.93	0.0089	0.0508				1	MIRT48892
TC0900011962	NACC2	NM_144653	1.93	0.0394	0.1415				1	MIRT27987
TC0100014191	RAB3B	NM_002867	1.91	0.0176	0.0815				1	
TC0300007124	ZNF621	NM_001098414	1.91	0.0181	0.0831				1	
TC1900011235	KLK12	NM_019598	1.91	0.023	0.0981				0	
TC0300011182	GLT8D1	NM_001010983	1.9	0.0227	0.0971	1.85	0.0292	0.1448	1	
TC0700008095	DTX2	NM_001102595	1.89	0.017	0.0797				1	
TC1000009221	ZRANB1	NM_017580	1.89	0.0226	0.0968				1	MIRT126345
TC1700010191	POLDIP2	NM_001290145	1.89	0.0292	0.1152				1	
TC1900011866	RAB3D	NM_004283	1.89	0.0397	0.142				1	
TC1800008750	TCF4	NM_001083962	1.88	0.036	0.1331	-1.93	0.03	0.1477	1	MIRT726343

May 2023

TC0700009608	ZNF212	NM_012256	1.88	0.0161	0.0768	-1.96	0.0108	0.0737	1	
TC1900010528	ZNF260	NM_001012756	1.88	0.0232	0.0988				1	
TC0400011744	ANXA5	NM_001154	1.87	0.044	0.1518				0	
TC0700006931	FAM221A	NM_001127364	1.87	0.0264	0.1079				0	
TC1600011329	TBC1D24	NM_001199107	1.87	0.0345	0.1295				1	
TC0X00008688	MAGEA9B; MAGEA9	NM_001080790	1.86	0.022	0.0953				0	
TC1200012653	METTL21B	NM_015433	1.86	0.0335	0.1268				0	
TC1500010051	RPP25	NM_017793	1.85	0.0112	0.0597	1.68	0.0302	0.1482	1	
TC1100013209	PAK1	NM_001128620	1.85	0.042	0.1475				1	
TC1600006448	HBQ1	NM_005331	1.85	0.0209	0.092				1	
TC1700011967	EIF4A3	NM_014740	1.85	0.0326	0.1244				1	
TC0100016968	RABIF	NM_002871	1.84	0.0211	0.0926	1.68	0.0484	0.1989	1	
TC1100012906	IGSF9B	NM_001277285	1.84	0.017	0.0796				1	
TC1100009447	FOXRED1	NM_017547	1.83	0.0449	0.154				1	
TC1600010179	DNAJA2	NM_005880	1.83	0.0216	0.0941				1	
TC1700011772	UNC13D	NM_199242	1.83	0.042	0.1475				1	
TC1100009789	TH	NM_000360	1.82	0.0284	0.113				1	
TC1100010089	RNF141	NM_016422	1.82	0.0345	0.1295				1	
TC1200008370	C12orf29	NM_001009894	1.82	0.0162	0.077				1	
TC0900009078	CACFD1	NM_001135775	1.81	0.0404	0.1436				1	
TC1400010595	KIAA0391	NM_001256678	1.81	0.0248	0.1033				1	
TC1600007528	ITGAM	NM_000632	1.81	0.0232	0.0986				1	
TC0400009525	ANKRD37	NM_181726	1.8	0.0302	0.1178	2.48	0.0016	0.0183	0	
TC1600010227	N4BP1	NM_153029	1.8	0.0288	0.1139				1	MIRT48847
TC1800006786	RNMT	NM_001308263	1.8	0.0279	0.1116				1	
TC0300014075	TRIM59	NM_173084	1.79	0.0374	0.137				1	
TC0400006812	USP17L24; USP17L26; USP17L5; USP17L27; USP17L29; USP17L30	NM_001242327	1.79	0.0439	0.1516				0	
TC1600007955	MT3	NM_005954	1.78	0.0416	0.1467	-1.96	0.0193	0.1089	1	

May 2023

TC0200014414	CXCR4	NM_001008540	1.78	0.0278	0.1113				1	
TC1700009954	TOM1L2	NM_001033551	1.77	0.01	0.0549	1.57	0.0378	0.1711	1	
TC0100018521	TSTD1	NM_001113205	1.77	0.0127	0.0652				0	
TC1700009619	DLG4	NM_001128827	1.77	0.0234	0.0993				1	
TC0100009742	CD160	NM_007053	1.76	0.0414	0.1462				1	
TC1400006711	DHRS4L1	NM_001277864	1.76	0.0448	0.1537				0	
TC1900010854	ZNF428	NM_182498	1.76	0.0357	0.1324				0	
TC1100012424	SIK3	NM_001281748	1.75	0.0439	0.1516				1	
TC1100013036	PPP2R5B	NM_006244	1.75	0.0266	0.1082				1	
TC1000008736	SUFU	NM_001178133	1.74	0.0416	0.1467	2.01	0.0117	0.0774	1	
TC0700013544	PSMA2	NM_002787	1.74	0.0221	0.0956	1.82	0.0144	0.089	1	
TC1900010067	PBX4	NM_025245	1.74	0.0164	0.0778				1	
TC1900011077	LMTK3	NM_001080434	1.74	0.0429	0.1494				0	
TC1900011822	ZNF586	NM_001077426	1.73	0.0113	0.06				1	
TC0100011812	ADCK3	NM_020247	1.72	0.0325	0.1241	1.88	0.0141	0.0878	0	
TC1800006889	RIOK3	NM_003831	1.72	0.0404	0.1437				1	
TC0400011535	DKK2	NM_014421	1.7	0.0252	0.1043				0	
TC0200014978	OLA1	NM_001011708	1.69	0.0316	0.1215				0	
TC2200008864	CYP2D6	NM_001025161	1.68	0.0499	0.1654				1	
TC1800009212	PARD6G	NM_032510	1.62	0.0423	0.1482				1	
TC1300007824	UBAC2	NM_001144072	1.6	0.0441	0.152				1	
TC1400010715	AJUBA	NM_001289097	-2.95	0.0034	0.025	2.1	0.0358	0.1653	1	
TC1700012369	FLCN	NM_144606				4.37	<0.0001	0.0008	1	
TC0900009855	BAG1	NM_001172415				4.11	0.0018	0.0197	1	
TC0700011518	GTF2IRD2; GTF2IRD2B	NM_001281447				3.86	<0.0001	0.002	0	
TC1900006528	NDUFS7	NM_024407				3.86	0.0054	0.046	0	
TC1600011421	VPS4A	NM_013245				3.84	0.0008	0.0113	0	
TC0500007605	TRAPPC13	NM_001093755				3.8	0.0012	0.0149	1	
TC2200008719	CBX6	NM_001303494				3.77	0.0029	0.0291	1	
TC0300007259	CCRL2	NM_001130910				3.72	0.0106	0.0725	1	
TC2000008436	TASP1	NM_017714				3.68	0.0254	0.1322	0	

May 2023

TC0700009977	PDGFA	NM_002607				3.66	0.0005	0.0078	1	
TC2200008885	POLDIP3	NM_001278657				3.45	0.0127	0.0819	1	
TC0200007181	YIPF4	NM_032312				3.38	0.003	0.0295	0	
TC1600006653	THOC6	NM_001142350				3.35	0.0097	0.0682	0	
TC1400007558	SUSD6	NM_014734				3.33	0.0089	0.0642	1	MIRT138794
TC1100008651	TMEM126B	NM_001193537				3.24	0.0022	0.0231	0	
TC0900008028	MFSD14B	NM_032558				3.1	0.0138	0.0862	0	
TC1100011234	LTBP3	NM_001130144				3.06	0.0013	0.0161	1	
TC1900011708	PDCD2L	NM_032346				3.06	0.0081	0.0601	1	
TC0300013968	CCDC51	NM_001256964				3.04	0.0063	0.0505	1	
TC1000009677	ASB13	NM_024701				3.04	0.0005	0.0075	1	
TC0300010975	KIF9	NM_001134878				3.02	0.0257	0.1336	1	
TC0100018234	TNNI3K	NM_015978				3	0.0277	0.14	1	
TC1900008691	ZNF766; MIR643	NM_001010851				2.96	0.0195	0.1095	0	
TC0X00010211	CHM	NM_000390				2.93	0.0104	0.0718	1	
TC1300006676	RASL11A	NM_206827				2.88	0.001	0.013	0	
TC0300013938	VGLL4	NM_001128219				2.83	0.0031	0.0303	1	
TC1500009720	HERC1	NM_003922				2.83	0.0284	0.1423	1	
TC0300011083	TRAIP	NM_005879				2.81	0.0419	0.1815	1	
TC1700008566	MAP3K3	NM_002401				2.79	0.0053	0.0449	1	MIRT147119
TC2100008222	RIPK4	NM_020639				2.79	0.0071	0.0552	1	
TC1900011329	ZNF415	NM_001136038				2.76	0.0047	0.0414	0	
TC1400006965	GEMIN2	NM_001009182				2.75	0.0048	0.0417	1	
TC1400010015	ITPK1	NM_001142593				2.73	0.0154	0.0932	1	
TC0X00011083	TMEM185A	NM_001174092				2.71	0.0022	0.0237	1	
TC1600006641	FLYWCH2	NM_001142499				2.71	0.0122	0.0795	1	
TC0800008769	TRMT12	NM_017956				2.7	0.0183	0.1041	0	
TC1700006773	TMEM88	NM_203411				2.7	0.0015	0.0176	0	
TC2000006993	SYNDIG1	NM_024893				2.7	0.0281	0.1415	1	
TC2200008734	CBX7	NM_175709				2.68	0.0082	0.061	0	

May 2023

TC1700012338	P2RX5- TAX1BP3	NR_037928				2.67	0.0014	0.0168	0	
TC0700012917	TPK1	NM_001042482				2.63	0.0164	0.0968	1	MIRT525484
TC0400010606	COMMD8	NM_017845				2.61	0.0086	0.0628	1	
TC1200008591	ACTR6	NM_022496				2.59	0.0375	0.1703	1	
TC1200009141	ACADS	NM_000017				2.56	0.0049	0.0427	1	
TC1600008328	DHODH	NM_001361				2.56	0.0224	0.1212	1	MIRT675839
TC1900009333	STAP2	NM_001013841				2.56	0.0093	0.0661	0	
TC1500010901	ST20	NM_001100879				2.54	0.0003	0.0048	0	
TC0500008632	SLC22A5	NM_001308122				2.53	0.0073	0.0561	1	
TC1900009917	EPS15L1	NM_001258374				2.52	0.0289	0.1438	1	MIRT51497
TC1900010360	ANKRD27	NM_032139				2.52	0.0181	0.1036	1	
TC0500009488	CREBRF	NM_001168393				2.51	0.0325	0.1551	1	MIRT2882
TC1700006709	XAF1	NM_017523				2.51	0.0087	0.0632	1	
TC0200008261	VAMP5	NM_006634				2.5	0.0024	0.025	0	
TC1700008011	DBF4B	NM_025104				2.49	0.025	0.131	0	
TC0200010927	MRPL44	NM_022915				2.46	0.0288	0.1434	1	
TC1600008971	JMJD8	NM_001005920				2.46	0.0271	0.1379	0	
TC1200009071	PEBP1	NM_002567				2.43	0.0211	0.116	1	
TC0300011223	SELK	NM_021237				2.41	0.0055	0.0461	0	
TC0400012905	QDPR	NM_000320				2.41	0.0159	0.0951	1	
TC0X00009256	KLHL15	NM_030624				2.41	0.0036	0.0343	1	MIRT727335
TC1500008978	EMC7	NM_020154				2.41	0.0115	0.0763	0	
TC0200011040	ITM2C	NM_001012514				2.4	0.0104	0.0719	1	
TC0600014086	ZNF391	NM_001076781				2.4	0.016	0.0953	1	
TC1600011223	SNAI3	NM_178310				2.4	0.0041	0.0374	1	
TC1400008118	AK7	NM_152327				2.39	0.0262	0.135	0	
TC0100018479	NOTCH2NL	NM_203458				2.38	0.0263	0.1354	1	
TC1900006499	ARID3A	NM_005224				2.37	0.005	0.0431	1	
TC0200015087	SESTD1	NM_178123				2.36	0.0075	0.0571	1	
TC1200009111	CCDC64	NM_207311				2.36	0.03	0.1479	0	

May 2023

TC1400010714	HAUS4; MIR4707	NM_001166269				2.36	0.0325	0.1551	0	
TC1900007415	DDX49	NM_019070				2.36	0.0313	0.1517	1	
TC1500010658	VIMP	NM_018445				2.35	0.0189	0.1069	0	
TC0700013102	KMT2C	NM_170606				2.34	0.006	0.049	1	
TC1400008462	C14orf79	NM_174891				2.34	0.021	0.1157	0	
TC1700006999	ADORA2B	NM_000676				2.34	0.0055	0.0464	1	
TC1900011683	HSH2D	NM_001291274				2.34	0.0054	0.0461	0	
TC1100013020	PPP1R32	NM_001170753				2.33	0.0148	0.0906	0	
TC0X00008881	SPRY3	NM_001304990				2.32	0.0126	0.0815	1	
TCOY00006855	SPRY3	NM_005840_2				2.32	0.0126	0.0815	1	
TC1400009104	RPL36AL	NM_001001				2.31	0.0223	0.1206	0	
TC1600008991	LMF1	NM_022773				2.31	0.0274	0.139	0	
TC2000008230	C20orf27	NM_001039140				2.31	0.0128	0.0823	1	
TC0600011381	FLOT1	NM_005803				2.3	0.0016	0.0183	1	
TC0900006758	DENND4C	NM_017925				2.29	0.0243	0.1286	1	
TC0100013368	PAQR7	NM_178422				2.29	0.0335	0.158	1	
TC1300009012	THSD1	NM_018676				2.24	0.0329	0.1564	0	
TC2200007982	UFD1L	NM_001035247				2.24	0.0072	0.0557	0	
TC0200016767	MREG	NM_018000				2.22	0.0062	0.0502	1	
TC2000008095	TPD52L2	NM_001243891				2.21	0.018	0.1033	1	
TC1000012423	PFKP	NM_001242339				2.2	0.0268	0.1369	1	MIRT56477
TC0500010169	ANKH	NM_054027				2.19	0.018	0.1032	1	MIRT9572
TC0900011220	SUSD1	NM_001282640				2.19	0.0211	0.116	1	
TC1200007821	SUOX	NM_000456				2.19	0.0197	0.1102	0	
TC1100010903	YPEL4	NM_145008				2.18	0.0096	0.0675	1	
TC0100009040	RPAP2	NM_024813				2.17	0.0308	0.15	1	
TC0100012674	GPR153	NM_207370				2.17	0.0206	0.1139	0	
TC0200010823	CDK5R2	NM_003936				2.17	0.0179	0.1029	0	
TC1200007895	OS9	NM_001017956				2.17	0.0387	0.1731	1	
TC1500007866	PPCDC	NM_001301101				2.15	0.009	0.0648	1	
TC1400008058	PPP4R4	NM_020958				2.14	0.0384	0.1725	1	

May 2023

TC1200012575	DYRK4	NM_001282285				2.13	0.0181	0.1034	1	
TC0600007854	Pl16	NM_001199159				2.12	0.0318	0.1535	1	
TC0X00007716	P2RY10	NM_014499				2.12	0.0417	0.1811	1	
TC1700007704	ARHGAP23	NM_001199417				2.12	0.0409	0.1789	1	
TC0500008941	ARHGAP26	NM_001135608				2.11	0.0255	0.1327	1	
TC1200012666	TMEM19	NM_018279				2.11	0.0274	0.1393	1	
TC1000008758	CNNM2	NM_017649				2.1	0.0213	0.1168	1	
TC1200010699	POU6F1	NM_002702				2.1	0.0372	0.1693	1	
TC1400008722	ZFHX2	NM_033400				2.1	0.0052	0.0448	1	
TC1500010778	IL16	NM_001172128				2.09	0.0421	0.1822	1	
TC1900006864	MAP2K7	NM_001297555				2.09	0.0259	0.134	1	
TC1900008505	BAX	NM_001291428				2.09	0.0076	0.0577	0	
TC0200013765	UXS1	NM_001253875				2.08	0.0151	0.0918	0	
TC0200012299	DHX57	NM_198963				2.07	0.0382	0.1719	0	
TC1200007654	ATG101	NM_001098673				2.07	0.0066	0.0522	0	
TC1800009229	SMAD4	NM_005359				2.07	0.0379	0.1714	1	MIRT284
TC2000007717	MOCS3	NM_014484				2.07	0.033	0.1565	1	
TC0700009560	CNTNAP2	NM_014141				2.06	0.0063	0.0507	1	
TC0X00008760	ZNF185	NM_001178106				2.06	0.017	0.0995	1	
TC1700011774	TRIM47	NM_033452				2.06	0.0338	0.1591	1	
TC0200014907	SLC25A12	NM_003705				2.05	0.0409	0.1789	1	
TC0100017713	TTC13	NM_001122835				2.04	0.0334	0.1576	1	
TC0300013934	EMC3	NM_018447				2.04	0.0349	0.1624	0	
TC1100013178	MAP4K2	NM_001307990				2.04	0.0056	0.0469	1	
TC1700012472	MRPL38	NM_032478				2.04	0.0301	0.1482	0	
TC1400008455	ZBTB42	NM_001137601				2.03	0.0102	0.0707	1	
TC0400009935	CCDC96	NM_153376				2.03	0.035	0.1628	1	
TC1500009460	FAM214A	NM_001286495				2.02	0.0353	0.1637	1	
TC0100007845	MANEAL	NM_001031740				2.01	0.0113	0.0756	1	MIRT68768
TC0100017241	TMEM206	NM_001198862				2.01	0.0291	0.1446	1	
TC1700009376	MYO1C	NM_001080779				2	0.0433	0.1854	1	

May 2023

TC0100007552	SESN2	NM_031459				1.99	0.0161	0.0955	0	
TC0100016903	TMEM9	NM_001288564				1.99	0.0109	0.074	1	
TC0800009201	GSDMD	NM_024736				1.99	0.032	0.1537	1	
TC0X00008844	IKBKG	NM_001099856				1.99	0.027	0.1378	1	
TC0X00010916	CT45A6; CT45A7	NM_001017438				1.98	0.0385	0.1726	0	
TC0100017028	PPP1R15B	NM_032833				1.97	0.01	0.0696	1	MIRT28
TC0900011496	PSMB7	NM_002799				1.97	0.0372	0.1693	0	
TC1100008085	PELI3	NM_001098510				1.97	0.0364	0.167	1	
TC0200016420	MRPL33	NM_004891				1.96	0.0261	0.1348	0	
TC0200015876	SERPINE2	NM_001136528				1.95	0.0416	0.1807	1	
TC0600009712	UTRN	NM_007124				1.95	0.0109	0.0741	1	
TC0100017568	JMJD4	NM_001161465				1.93	0.0275	0.1393	1	
TC0X00008259	NDUFA1	NM_004541				1.93	0.0193	0.1086	0	
TC1700007429	ANKRD13B	NM_152345				1.92	0.0427	0.1838	1	
TC0X00008811	TMEM187	NM_003492				1.9	0.0164	0.0969	0	
TC1200008322	TMTC2	NM_152588				1.89	0.0341	0.1599	1	
TC0600014260	ATP6V1G2	NM_001204078				1.89	0.0148	0.0907	1	
TC1900009668	SPC24	NM_182513				1.89	0.0362	0.1663	1	
TC1100009394	PANX3	NM_052959				1.88	0.0356	0.1646	1	
TC1500006967	GCHFR	NM_005258				1.87	0.0191	0.1081	1	
TC0700008928	CPED1	NM_001105533				1.86	0.008	0.0597	1	
TC0X00007574	ACRC	NM_052957				1.85	0.0281	0.1412	0	
TC1700012337	P2RX5	NM_001204519				1.84	0.0409	0.1789	1	
TC1600007307	C16orf82	NM_001145545				1.81	0.0301	0.1481	1	
TC1600008973	FBXL16	NM_153350				1.8	0.0411	0.1796	1	
TC1700012231	TMEM98	NM_001033504				1.8	0.0396	0.1754	1	
TC0700008389	ASB4	NM_016116				1.79	0.0383	0.1723	1	
TC1100012610	BSX	NM_001098169				1.79	0.0318	0.1534	0	
TC1600011472	NMRAL1	NM_001305142				1.79	0.0178	0.1025	1	
TC1900009669	KANK2	NM_001136191				1.78	0.0384	0.1725	1	
TC1700009113	GAA	NM_000152				1.77	0.0318	0.1534	0	

TC1200006645	CD4	NM_000616				1.75	0.0317	0.1532	0	
TC1900009269	TLE2	NM_001144761				1.75	0.0333	0.1573	1	
TC1100012444	PCSK7	NM_004716				1.73	0.0353	0.1639	1	
TC0100011859	IBA57	NM_001010867				1.73	0.044	0.1874	1	MIRT48883
TC1500010049	FAM219B	NM_020447				1.73	0.0432	0.1852	1	
TC0300011065	AMT; NICN1	NM_000481				1.72	0.0424	0.183	0	
TC0900012192	PHPT1	NM_001135861				1.71	0.0361	0.1661	1	
TC1000011716	USMG5; MIR1307	NM_001206426				1.71	0.0422	0.1825	0	
TC1700006679	RPAIN	NM_001033002				1.7	0.0269	0.1373	0	
TC0100007486	SFN	NM_006142				1.68	0.0415	0.1803	1	
TC1900010894	ZNF180	NM_001278508				1.67	0.0368	0.1682	1	MIRT2827
TC1000009327	MGMT	NM_002412				1.6	0.032	0.1537	1	

Supplementary Table S4. miR-93 potential transcription factors with highest level of evidence (level 2) and for which the ChIP-seq data was derived from blood tissue (retrieved from TransmiR v2.0 database).

TF name	TSS	Binding site	Action type	SRAID/ PMID	Evidence	Tissue
ATF3	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101352- \\ & 100101481 \text { (score=795) } \end{aligned}$	Regulation	SRX100425	Level 2	Blood
ATF3	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101356- \\ & 100101490 \text { (score=582) } \end{aligned}$	Regulation	SRX100553	Level 2	Blood
BHLHE40	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101308 \text { - } \\ & 100101550 \text { (score=1000) } \end{aligned}$	Regulation (feedback)	SRX150695	Level 2	Blood
BRD4	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101446- \\ & 100101561 \text { (score=258) } \end{aligned}$	Regulation (feedback)	SRX1460852	Level 2	Blood
CBFB	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101386- \\ & 100101604 \text { (score=506) } \end{aligned}$	Regulation	SRX265219	Level 2	Blood
CHD2	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	Chr7: 100101405100101529 (score=492)	Regulation (feedback)	SRX150581	Level 2	Blood
CHD2	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101413- \\ & 100101544 \text { (score=283) } \end{aligned}$	Regulation (feedback)	SRX150458	Level 2	Blood
CREB1	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101386- \\ & 100101570(\text { score=465 } \end{aligned}$	Regulation (feedback)	SRX190216	Level 2	Blood
E2F4	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101289- \\ & 100101670 \text { (score=1000) } \end{aligned}$	Regulation	SRX150679	Level 2	Blood
E2F4	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101328- \\ & 100101642 \text { (score=581) } \end{aligned}$	Regulation	SRX150410	Level 2	Blood
EGR1	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101490- \\ & 100101661 \text { (score=796) } \end{aligned}$	Regulation (feedback)	SRX100459	Level 2	Blood
ELF1	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101497- \\ & 100101646 \text { (score=333) } \end{aligned}$	Regulation	SRX100539	Level 2	Blood
ERG	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101351 \text { - } \\ & 100101632 \text { (score=1000) } \end{aligned}$	Regulation	SRX265230	Level 2	Blood
ERG	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101360- \\ & 100101629 \text { (score=642) } \end{aligned}$	Regulation	SRX682375	Level 2	Blood
FOS	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101374- \\ & 100101577 \text { (score=1000) } \end{aligned}$	Regulation	SRX015141	Level 2	Blood
FOS	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101374- \\ & 100101577 \text { (score=1000) } \end{aligned}$	Regulation	SRX150435	Level 2	Blood
FOS	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101423- \\ & 100101517 \text { (score=384) } \end{aligned}$	Regulation	SRX150489	Level 2	Blood
GABPA	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101408- \\ & 100101607 \text { (score=}=725) \end{aligned}$	Regulation	SRX326887	Level 2	Blood
GATA1	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101392- \\ & 100101457(\text { score=316 } \end{aligned}$	Regulation	SRX218418	Level 2	Blood
IRF1	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101402- \\ & 100101592(\text { score=529 } \end{aligned}$	Regulation (feedback)	SRX150628	Level 2	Blood
KDM5B	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101281 \text { - } \\ & 100101381 \text { (score=258) } \end{aligned}$	Regulation (feedback)	SRX186782	Level 2	Blood
KLF1	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101385- \\ & 100101463(\text { score }=446) \end{aligned}$	Regulation	SRX218419	Level 2	Blood
KMT2A	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101381- \\ & 100101571(\text { score }=468) \end{aligned}$	Regulation	SRX1293531	Level 2	Blood
MAX	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101309- \\ & 100101645 \text { (score=1000) } \end{aligned}$	Regulation	SRX150424	Level 2	Blood
MAX	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101311 \text { - } \\ & 100101658 \text { (score=1000) } \end{aligned}$	Regulation	SRX150723	Level 2	Blood
MAX	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101335- \\ & 100101511 \text { (score=788) } \end{aligned}$	Regulation	SRX150618	Level 2	Blood
MAX	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101345- \\ & 100101623 \text { (score=384) } \end{aligned}$	Regulation	SRX129084	Level 2	Blood
MAX	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101357- \\ & 100101497(\text { score }=485) \end{aligned}$	Regulation	SRX150597	Level 2	Blood
MAX	$\begin{aligned} & \text { chr7:100 } \\ & 101379 \end{aligned}$	$\begin{aligned} & \text { Chr7: } 100101366- \\ & 100101523 \text { (score=275) } \end{aligned}$	Regulation	SRX204413	Level 2	Blood

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { MAZ } & \begin{array}{l}\text { chr7:100 } \\ 101379\end{array} & \begin{array}{l}\text { Chr7: } 100101484- \\ \text { 100101667 (score=655) }\end{array} & \begin{array}{l}\text { Regulation } \\ \text { (feedback) } \\ \text { Regulation }\end{array} & \text { SRX150363 } & \text { SRX204906 } & \text { Level 2 } \\ \text { Level 2 } & \text { Blood } \\ \hline \text { MED1 } & \text { chr7:100 } & \text { Chr7: } 100101433- \\ 101379 & \text { 100101611 (score=294) }\end{array}\right)$

Supplementary Table S5: panel of myeloid and lymphoid markers

Myeloid cell staining			
mCD45	BUV 395	30-F11	BD Biosciences
mCD11b	Brilliant Violet 750	M1/70	BioLegend
mCD206	FITC	MR5D3	BioLegend
mF4/80	PE-CY7	BM8	BioLegend
mLy6C	APC-CY7	HK1.4	BioLegend
mLy6G	PerCP	1A8	BioLegend
mCSF1R	PE	604B5 2E11	Bio-Rad
$m I A^{\text {b }}$	eFluor 450	AF6-120.1	eBioscience
mPD-L1	AlexaFluor 700	MIH5	Novus
Lymphoid cell staining			
mCD62L	BUV 395	MEL-14	BD Biosciences
mCD4	Brilliant Violet 650	GK1.5	BD Biosciences
mCD19	PE-CY7	1D3	BD Biosciences
mCD3ع	APC-CY7	145-2C11	BioLegend
mCD8a	PerCP	53-6.7	BioLegend
mPD-1	eFluor 450	RMP1-30	eBioscience
mCD5	APC	53-7.3	BD Biosciences
mPD-L1	AlexaFluor 700	MIH5	Novus
mCD44	BUV737	IM7	BD Biosciences
mCD25	Brilliant Violet 786	PC61	BD Biosciences
mCD45	Brilliant Violet 711	30-F11	BioLegend

Supplementary Table S6: Primer and sgRNA sequences and antibodies

qPCR Primer	Sequence Forward (5' to 3')	Sequence Reverse (5' to $\mathbf{3}^{\prime}$)
GAPDH	AGGTCGGAGTCAACGGATTT	ATGAAGGGGTCATTGATGGCA
BACTIN	GAGCACAGAGCCTCGCCTTT	TCATCATCCATGGTGAGCTGG
CD38	CCTGGGTGATACATGGTGGA	GATCCTGGCATAAGTCTCTGGA
IFNG	CTGTTACTGCCAGGACCCAT	TCCGCTACATCTGAATGACC
CD28	GTGGAGTCCTGGCTTGCTAT	GCTCCTCTTACTCCTCACCC
BCL6	AAGGCCAGTGAAGCAGAGAT	GAACTCTTCACGAGGAGGCT
CD160	TGGACATCCAGTCTGGTGGA	TTAGTCGCGTTCCTTCCTGG
STAT3	CCTTTGGAACGAAGGGTACA	GGCTTAGTGCTCAAGATGGC
ZRANB1	AATGCTTGTGTGGGGGTTG	TGACGTGCAATGTCTCCTCC
CD37	ATCCTCATCTCCACTCAGCG	GGTGCCGTACTTTTGGATGG
BTN3A1	CCTGGAGGAACTCAGATGGA	TGAATGTCTCTCTCCCCGAG
TGFBR2	TCATGTGTTCCTGTAGCTCTGA	CGCGGTAGCAGTAGAAGATG
RAP2C	CCGAGCAGATAAAACTCAGAGG	CCAAGGCTCAGTTCTGCAAC
MXD1	CGACTCCGACAGGGAAGAAA	AGATAGTCCGTGCTCTCCAC
CD6	GCGGTTCAACAACTCCAACC	ATTGTGCAAACTCCGGGAAG
SMAD4	AGAACATTGGATGGGAGGCT	CCAGAGACGGGCATAGATCA
TGFBR1	CCAAACCACAGAGTGGGAAC	CGTCGAGCAATTTCCCAGAA
RNF216	CAAAGAGATGGCAGAGCATGAA	ATAGCAGCAGCGACACTCA
TRAF6	CCCCAATTCCATGCACATTCA	TGTGTGACTGGGTGTTCTCT
SUSD6	AAGAGCACCTCAGTGTTTGC	GGGGCACACGGAAGCA
TANK	ACAGCAAAAGACTGAGAACTATGA	GCTGTTCCTGTTGTTCACGTA
PAK1	TCATGTCGGTTTTGATGCTGT	GCTCTGGCATTCCCGTAAAC
IP6K1	TCCAAGGACCGAAAGCTCTA	CCATCTTCAGGTCCAACACG
AJUBA	ATGCTGTGTCTGTGGTCACT	AGGACTTCCCCATTGCTTGTA
SOS1	CAGTTATCAAAGCCTGGGGC	CCTTCGCCTATTGACTGCAA
SLC2A4	CCCCGCTACCTCTACATCATC	CAGGCGCTTCAGACTCTTTC
IFNGR1	AGCCAGGGTTGGACAAAAAGA	ACTTCCTGCTCGTCTCCATTTA
TGFB	GACATCAACGGGTTCACTACC	AATGTACAGCTGCCGCACG
MAP2K7	GCAAGATGACAGTGGCGATT	CCGTGCTTCTCCTTCAGGTA
CCL28	ACTTGGCTGCTGTCATCCTT	TAACAGTATGGTTGTGCGGG
CXCR4	CTTCCTGCCCACCATCTACTC	ATGACCAGGATGACCAATCCA
IKBKG	GCTGCCTGGAGGAGAATCAA	CAGAATCTGGTTGCTCTGCC
DUSP16	TGCCGTGGTTGGACAAATC	AGATCCCAGCTAAACAGTGC
PELI3	CAAGCTGGTGGAAAACGAGT	CCCACACAGGTCGATGAGAG
MAL3K3	GAAGCTGCCAATCCTTGGAC	GCACGGGACATTCGTGATTT
TPK1	CTACCAGCCATTGTAGGCCA	AATTCCCAGTGGAAAGCAGG
ATF1	ATCAGACTAGCAGCGGACAG	TGCCAACTGTAAGGCTCCAT

ZAP70	GAGTGTCCACCCGAACTGTA	GCGATCCTCCCACTTGTAGA
MAP4K2	CTGAGGACTGTGAGCTGGAG	CCGGGAGTGAATGGTGTCT
PFKP	GAGCACCTGACGGAGAAAAT	TCTCATTTCTGAGCACAAGGC
IFNGR2	CAATGTCACTCTACGCCTTCG	TGATGAGGGAGCCTTCTCCT
CD99	GAAAATGACGACCCACGACC	GGTTTGGATTTGGCATCGGT
CD83	GCCGACAAGAGCAGTTTCAT	AGACATAGGCCCCCATCCTA
STAT1	GCCAAAGGAAGCACCAGAG	GAGCAGGTTGTCTGTGGTCT
IL4R	AGCTCTGGGAACATGAAGGT	CCTCCGTTGTTCTCAGGGATA
DNA Primer	Sequence Forward (5' to 3')	Sequence Reverse (5' to 3')
miR-93 locus	ACCTTCACTGAGAGGGTGGT	AGACCCTTTTGAACGCCACT
sgRNA	Sequence upstream (5' to 3')	Sequence downstream (5' to 3')
miR-93 KO	CTCCAAAGTGCTGTTCGTGC(AGG)	GTGCTAGCTCAGCAGTAGGT(TGG)
Antibody	Catalog number	Company
MCM7 mAb (D10A11)	3735S	Cell Signaling
GAPDH mAb (0411)	sc-47724	Santa Cruz
AGO2 mAb (2E12-1C9)	H00027161-M01	Abnova
lgGk mAb (MG1- 45)	Ab18447	Abcam
STAT1 mAb (D1K9Y)	14994	Cell Signaling
Anti-F4/80 mAb [Cl:A3-1]	ab6640	Abcam
Goat Anti-Rat lgG H\&L (Alexa Fluor® 647) pAb	ab150159	

References

1. Rittirsch D, et al. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31-6.
2. Pichler M, et al. Therapeutic potential of FLANC, a novel primate-specific long noncoding RNA in colorectal cancer. Gut. 2020.
3. Silasi R, et al. Inhibition of contact-mediated activation of factor XI protects baboons against S aureus-induced organ damage and death. Blood Adv. 2019;3(4):658-69.
4. Keshari RS, et al. Inhibition of complement C5 protects against organ failure and reduces mortality in a baboon model of Escherichia coli sepsis. Proc Natl Acad Sci U S A. 2017;114(31):E6390-E9.
5. Silasi R, et al. Factor XII plays a pathogenic role in organ failure and death in baboons challenged with Staphylococcus aureus. Blood. 2021;138(2):178-89.
6. Keshari RS, et al. Complement C5 inhibition protects against hemolytic anemia and acute kidney injury in anthrax peptidoglycan-induced sepsis in baboons. Proc Natl Acad Sci U S A. 2021;118(37).
7. Popescu NI, et al. C3 Opsonization of Anthrax Bacterium and Peptidoglycan Supports Recognition and Activation of Neutrophils. Microorganisms. 2020;8(7).
8. Popescu NI, et al. Peptidoglycan induces disseminated intravascular coagulation in baboons through activation of both coagulation pathways. Blood. 2018;132(8):849-60.
9. Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2002;2(3):171-9.
10. Hinshaw LB, et al. Lethal Staphylococcus aureus-induced shock in primates: prevention of death with anti-TNF antibody. J Trauma. 1992;33(4):568-73.
11. Knaus WA, et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818-29.
12. Vincent JL, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707-10.
13. Shapiro NI, et al. Mortality in Emergency Department Sepsis (MEDS) score: a prospectively derived and validated clinical prediction rule. Crit Care Med. 2003;31(3):670-5.
14. Yang Z, et al. Cardiac Troponin Is a Predictor of Septic Shock Mortality in Cancer Patients in an Emergency Department: A Retrospective Cohort Study. PLoS One. 2016;11(4):e0153492.
15. Basar R, et al. Large-scale GMP-compliant CRISPR-Cas9-mediated deletion of the glucocorticoid receptor in multivirus-specific T cells. Blood Adv. 2020;4(14):3357-67.
16. Dragomir MP, et al. The non-coding RNome after splenectomy. J Cell Mol Med. 2019;23(11):7844-58.
17. Vandesompele J, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.
18. Kishimoto C, et al. Enhanced production of macrophage inflammatory protein 2 (MIP2) by in vitro and in vivo infections with encephalomyocarditis virus and modulation of myocarditis with an antibody against MIP-2. J Virol. 2001;75(3):1294-300.
19. Aziz M, et al. Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol. 2012;189(1):393402.
20. Yu C, et al. Rhein prevents endotoxin-induced acute kidney injury by inhibiting NFkappaB activities. Sci Rep. 2015;5:11822.
21. Martin EL, et al. Phosphoinositide-3 kinase gamma activity contributes to sepsis and organ damage by altering neutrophil recruitment. Am J Respir Crit Care Med. 2010;182(6):762-73.
22. Karamese M, et al. Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: an immunological, biochemical, and histopathological study. Immunopharmacol Immunotoxicol. 2016;38(3):228-37.
23. Rosenlund IA, et al. CRISPR/Cas9 to Silence Long Non-Coding RNAs. Methods Mol Biol. 2021;2348:175-87.
24. Tan LP, et al. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res. 2009;37(20):e137.
25. Clarke DJB, et al. Appyters: Turning Jupyter Notebooks into data-driven web apps. Patterns (N Y). 2021;2(3):100213.
26. Benjamini Y. Discovering the false discovery rate. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2010;72(4):405-16.
27. Gałecki A, and Burzykowski T. Linear mixed-effects model. InLinear mixed-effects models using R.: Springer, New York, NY.; 2013.

Supplementary Figure 13D

PCR product gel electrophoresis, 3\% agarose gel, 100V, 5h, 100bp ladder (Promega).
Samples left to right: ladder, (empty), clone\#2 (miR-93+/-), clone\#4 (miR-93-/-), clone \#6 (miR-93-/-), clone \#11 (miR-93 +/+), clone \#13 (miR-93+/-), clone \#23 (miR-93+/+), ladder.

Supplementary Figure 13G

Western Blot, Amersham ECL Rainbow Marker Full Range (Sigma).
Samples left to right: marker, (empty), Jurkat parental, (empty), clone\#11 (miR-93 +/+), (empty), clone\#4 (miR-93-/-), (empty), clone \#6 (miR-93-/-), (empty), clone\#2 (miR-93+/-), (empty), clone \#13 (miR-93+/-), (empty), marker.

Supplementary Figure 14A

Western Blot, Amersham ECL Rainbow Marker Full Range (Sigma).
Samples left to right: marker, Jurkat parental total fraction (TF) IgG-IP, Jurkat parental flow through (FT) IgG-IP, Jurkat parental IP fraction IgG-IP, (empty), Jurkat parental total fraction (TF) Ago2-IP, Jurkat parental flow through (FT) Ago2-IP, Jurkat parental IP fraction Ago2-IP, (empty), marker, clone\#11 (miR93 +/+) total fraction (TF) IgG-IP, clone\#11 (miR-93 +/+) flow through (FT) IgG-IP, clone\#11 (miR-93 +/+) IP fraction IgG-IP, (empty), clone\#11 (miR-93 +/+) total fraction (TF) Ago2-IP, clone\#11 (miR-93 +/+) flow through (FT) Ago2-IP, clone\#11 (miR-93 +/+) IP fraction Ago2-IP.

Samples left to right: marker,), clone\#4 (miR-93-/-) total fraction (TF) IgG-IP,), clone\#4 (miR-93-/-) flow through (FT) IgG-IP,), clone\#4 (miR-93-/-) IP fraction IgG-IP, (empty),), clone\#4 (miR-93-/-) total fraction (TF) Ago2-IP,), clone\#4 (miR-93-/-) flow through (FT) Ago2-IP,), clone\#4 (miR-93-/-) IP fraction Ago2-IP, (empty), marker, clone \#6 (miR-93-/-) total fraction (TF) IgG-IP, clone \#6 (miR-93-/-) flow through (FT) IgG-IP, clone \#6 (miR-93-/-) IP fraction IgG-IP, (empty), clone \#6 (miR-93-/-) total fraction (TF) Ago2-IP, clone \#6 (miR-93-/-) flow through (FT) Ago2-IP, clone \#6 (miR-93-/-) IP fraction Ago2-IP.

NB: the anti-mouse secondary HRP-linked antibody used also reacts with the murine normal IgG used as a control antibody for the immunoprecipitation. The band visible in the IgG-mediated IP fraction is thus the IgG heavy chain (ca. 68KDa). The band for specific for Ago2 is visible at ca. 95kDa.

Figure 5D

Western Blot, Amersham ECL Rainbow Marker Full Range (Sigma).
Samples left to right (for both gels): Jurkat Parental, Jurkat shControl, Jurkat shSTAT1-A, Jurkat shSTAT1B, Jurkat shSTAT1-C, and Jurkat shSTAT1-D.

Supplementary Figure 16B

PCR product gel electrophoresis, 3\% agarose gel, 100V, 5h, 100bp ladder (Promega).
Samples left to right: ladder, NB4 parental, 1-G4 (miR-93+/+), 2-F2 (miR-93+/+), 2-F10 (miR-93-/-), 2-E6 (miR-93-/-), 2-D7 (miR-93-/-), 1-D5 (miR-93-/-, with slightly different deletion size).

Supplementary Figure 16E

Western Blot, Amersham ECL Rainbow Marker Full Range (Sigma).
Samples left to right (for both gels): marker, (empty), NB4 parental, NB4 1-G4 (miR-93+/+), NB4 2-F2 (miR-93+/+), NB4 2-F10 (miR-93-/-), NB4 2-E6 (miR93-/-), NB4 2-D7 (miR93-/-), NB4 1-D5 (miR93-/-).

