Supplemental Figures

Supplemental Figure 1. Comparable numbers of B cells from B/6 naïve or tolerant mice bind to donor MHC tetramers with high (Hi), medium (Med) and low (Lo) mean fluorescence intensity (MFI). Representative flow plots of H-2K^d tetramer-binding B cells from naïve B/6 mice were divided into tetramer Hi, Med and Lo subsets, using (A) double-positive donor MHC Class I (K^d) tetramer conjugated to PE or APhC fluorochromes, and alternative (B) decoy K^b (recipient MHC)-tetramer conjugated to PE and AF647 and incubated with K^d-PE tetramers. Total number of (C) α K^d, (D) α L^d, (E) α I-E^d-tetramer binding B cells with Hi, Med and Lo (MFI) from naïve (black circle) or Tol mice (blue square) using dual fluorochrome single tetramer approach, *n=4/group*. Total number of (F) α K^d, (G) α L^d, (H) α I-E^d specific B cells with Hi, Med and Lo (MFI) from naïve (black circle) vs Tol mice (blue square) using decoy tetramer approach, *n=4/group*. Data represent mean ± SEM. Statistical significance by unpaired two-tailed Student's t test.

Supplemental Figure 2. Early BCR signaling by alloreactive B cells. (A) Representative flow plot showing flow sort I-E^d-Neg, I-E^d-Lo, and I-E^d-Hi B cells populations. (B) Representative flow plots depicting CD69, Nur77, and IRF4 expression in I-E^d-Neg B cells and I-E^d-Hi B cells. (C) Fold increase in the percentage of α I-E^d B cells expressing CD69, Nur77 and IRF4, after stimulation with immobilized I-E^d for 12 hours, *n*=2-6 *mice/group*. Controls were unstimulated or α IgM stimulated I-E^d-Neg B cells. Time-dependent expression of (D) CD69, (E) Nur77 and (F) IRF4 by α IgM stimulated I-E^d-Neg B cells from naïve, tolerant (≥day 30 post-transplant) and AR (day 7-10 post-transplant) mice, *n*=4-6/ group. Data were normalized to unstimulated I-E^d-Neg B cells cultured for 6 or 12 hours. Each dot represents an individual mouse, pooled from ≥ 2 independent experiments. Data are presented as mean ± SEM. **p*<0.05, ***p*<0.01, ****p*<0.001, *****p*<0.0001 by two-way ANOVA with Tukey's post test.

Supplemental Figure 3. Alloreactive B cells from tolerant recipients have upregulated Glut-1 and Ki-67 expression compared to alloreactive B cells from naïve B/6. (A) Glut-1, (B) Ki-67, and (C) Mitochondrial mass (MM) of α Tet B cells (MFI) analyzed from the spleen and LNs of naïve and Tol mice (\geq D30 post-transplant), *n=5/group*. (D) Percentage of CD40 positive and (E) MFI of CD40 expression by tetramer-binding B cells in naïve, tolerant (Tol) or sensitized (Sens) mice that had been immunized with 2x10⁷ donor B/c splenocytes in the flank, 12 days before analysis, *n=4-6/group*. Data represent mean ± SEM. **p<0.05*, ****p<0.001* by unpaired student's t-test.

Supplemental Figure 4. Comparable numbers of anti-K^d B cells recovered from MD4 host receiving naïve or tolerant B cells. Spleen and LNs (inguinal, axillary, branchial) were harvested from MD4 recipients receiving naïve B cells with or without B/c DSC immunization, or tolerant B cells with B/c immunization, and analyzed on day 14 post-AdTr. (A) Total number of recovered all AdTr naïve and Tol B cells, (B) and Tet⁺ AdTr naïve B and Tol B cells, recovered on day 14 post-AdTr into MD4 mice (no DSC immunization), n=5/group. (C) Total number of α K^d binding B cells, n=5-8/group. (D) Percentage of CD40-positive and (E) MFI of CD40 expression by naïve B and Tol B cells on day 14 post-AdTr into MD4 hosts, n=5/group. Data represent mean ± SEM. *p<0.05, **p<0.01 by one-way ANOVA with Bonferroni post test.

Supplemental Figure 5. Agonistic α CD40+CpG stimulates polyclonal B cell activation. (A) Representative histogram and (B) quantification of CD69 (MFI) expression on B cells from naïve mice receiving CpG (100µg/mse, i.v. given on day 0 and 50µg/mse, i.p. at day 1, 2) + α CD40 (100µg/mse, i.v. at day 0). Mice were sacrificed on day 3 post-CpG+ α CD40, *n*=5-6/group. Data were pooled from 2 independent experiments. Data represent mean ± SEM. ****p<0.0001 by unpaired student's t-test.

Supplemental Figure 6. Agonistic anti-CD40 induces allograft rejection and DSA production. Agonistic α CD40 (100µg/mse, i.v.) administered on D0 and D7 post-heart transplantation and tolerance treatment with anti-CD154+DSC (CoB). (A) Percent graft survival in tolerant mice and tolerant mice ± agonistic α CD40. (B) DSA-lgG (MFI) measured on D14 post-transplant, *n=5/group*. Data were pooled from 2 independent experiments. Data represent mean ± SEM. *****p*<0.0001 by one-way ANOVA with Bonferroni post test and percent graft survival of the heart allografts by log-rank test.

Supplemental Figure 7. Donor-specific B cells from tolerant recipients do not exhibit enrichment of markers associated with transitional B cells and Bregs. Analyses of B220, CD93, IgM and CD23 expression by alloreactive B cells from naive and Tol mice. Following gating on B220⁺Dump⁻ cells, quantification of (**A**) % CD93 of α K^d or α I-E^d specific B cells, *n=6-11/group*. (**B**) T1 (IgM⁺CD23⁻), T2 (IgM⁺CD23⁺), T3 (IgM⁻ CD23⁺) within the CD93⁺ α K^d or α I-E^d B cell populations, *n=6-9/group*. (**C**) % follicular (CD21⁺CD23^{hi}) and marginal zone (CD21^{hi}CD23⁻) within CD93⁻ α K^d or α I-E^d B cells, *n=6-11/group*. (**D**) % CD5⁺CD1d⁺ of α K^d or α I-E^d-specific B cells, *n=6-11/group*. (**E**) % TIM-1⁺ of α K^d or α I-E^d B cells in tolerant vs naïve mice, *n=6-11/group*. (**F**) % of IL-10 of α K^d or α I-E^d B cells from naïve B/6, or naïve and tolerant IL-10 gfp-reporter mice (B6.129S6-*II10^{tm1Fiv}*/J). Spleen and lymph node cells were stimulated with LPS, PMA + lonomycin for 8-10 hours, and then incubated with MHC tetramers and other antibodies. GFP expression was used to assess IL-10, *n=4-9/group*. Data represent mean ± SEM. Statistical significance by two-way ANOVA with Tukey's post test and Kruskal-Wallis or Holm-Sidak's multiple comparison tests.

Supplemental Figure 8. No B cells deletion and no reduction of circulating BAFF in tolerant recipients. (A) Tolerant recipients have comparable total number of circulating B cells on day 7 and 14 post-HTx. Heparinized peripheral blood from Tol mice were collected on days 0, 7 and 14 post-HTx and anti-154+DSC treatment. Absolute counts (cells per microliter) of B cells in the peripheral blood of Tol mice were analyzed on day 0, 7 and 14. *n*=5-6/group. Data were pooled from 2 independent experiment. (B) Circulating serum BAFF levels measured by ELISA in naïve or tolerant mice on day 14 and 21 post-HTx, *n*=5/group. (C) Serum BAFF levels from MD4 mice that received naïve or tolerant B cells immunized with DSC. *n*=4-5/group. Data were pooled from 2 independent experiments and are presented as mean \pm SEM. **p*<0.05, ****p*<0.001, *****p*<0.0001 by one-way ANOVA with Bonferroni post-test.

Supplemental Figure 9. GARP expression is not upregulated in tolerant B cells. (A) % GARP⁺ of α Tet B cells in naïve and Tol mice, *n=5/group*. (B) % GARP of α Tet B cells in MD4 hosts of naïve B cells or Tol B cells ± immunization with B/c DSC, and analyzed on day 14 post-AdTr, *n=5/group*. Data were pooled from 2 independent experiments. Data represent mean ± SEM. ****p*<0.001 by one-way ANOVA with Bonferroni post test.

Supplemental Figure 10. Lack of alloantibody production and induction of B cell tolerance in F1 HTx Bcl6FC recipients treated with CoB. (A) Tolerant (Tol) C57BL/6 or Bcl6FC mice received F1 HTx and treated with anti-CD154 (D0, 7, 14) + DSC (D0), while AR mice received F1 HTx without treatment. DSA-IgG from WT and Bcl6FC-Tol recipients on day 14, 21, 30, 45, 60, and AR recipients on day 14 post-HTx, *n=4/group*. *****p*<0.0001 by two-way ANOVA with Tukey's post-test for multiple comparisons. (B) Experimental design. 2x10⁷ enriched B cells from naive, and WT or Bcl6FC-Tol mice on day 60 post-HTx, together with 1x10³ purified TCR75 T cells and 5x10⁶ purified B/6 T cells were adoptive transferred (AdTr) into MD4 recipients, which were then immunized with B/c DSC the following day. (C) DSA-IgG (MFI) from naïve B, WT-ToI-B or Bcl6FC-ToI-B cells recipients were measured on day 14 post-AdTr, n=5-6/qroup. (D) Gating strategy used to identify follicular regulatory T cells (Tfr). Spleens and LNs (inguinal, axillary, branchial lymph nodes) were harvested from MD4 hosts that received naïve B cells or Tol B cells on day 14 post-AdTr. Foxp3⁺ and Foxp3⁻ CD4⁺ T cells were gated as in the flow plot. Tfr cells are defined as Foxp3⁺CXCR5^{hi}PD-1^{hi}. (E) Total number of Tfr (Foxp3⁺CXCR5⁺PD-1⁺) CD4 T cells/mse from the spleen and LNs harvested on day 14 post-AdTr, from MD4 mice receiving naïve B or Tol B cells, then immunized with 2x10⁷ B/c DSC, n=3-5/group. Data are presented as mean ± SEM. ***p<0.001, ****p<0.0001 by one-way ANOVA with Bonferroni post-test.